Pervasive algebras on planar compacts

Jan Čerych

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 3, page 491-494
  • ISSN: 0010-2628

Abstract

top
We characterize compact sets X in the Riemann sphere 𝕊 not separating 𝕊 for which the algebra A ( X ) of all functions continuous on 𝕊 and holomorphic on 𝕊 X , restricted to the set X , is pervasive on X .

How to cite

top

Čerych, Jan. "Pervasive algebras on planar compacts." Commentationes Mathematicae Universitatis Carolinae 40.3 (1999): 491-494. <http://eudml.org/doc/248393>.

@article{Čerych1999,
abstract = {We characterize compact sets $X$ in the Riemann sphere $\mathbb \{S\}$ not separating $\mathbb \{S\}$ for which the algebra $A(X)$ of all functions continuous on $\mathbb \{S\}$ and holomorphic on $\mathbb \{S\}\setminus X$, restricted to the set $X$, is pervasive on $X$.},
author = {Čerych, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compact Hausdorff space $X$; the sup-norm algebra $C(X)$ of all complex-valued continuous functions on $X$; its closed subalgebras (called function algebras); pervasive algebras; the algebra $A(X)$ of all functions continuous on $\mathbb \{S\}$ and holomorphic on $\mathbb \{S\}\setminus X$; pervasive algebras},
language = {eng},
number = {3},
pages = {491-494},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pervasive algebras on planar compacts},
url = {http://eudml.org/doc/248393},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Čerych, Jan
TI - Pervasive algebras on planar compacts
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 3
SP - 491
EP - 494
AB - We characterize compact sets $X$ in the Riemann sphere $\mathbb {S}$ not separating $\mathbb {S}$ for which the algebra $A(X)$ of all functions continuous on $\mathbb {S}$ and holomorphic on $\mathbb {S}\setminus X$, restricted to the set $X$, is pervasive on $X$.
LA - eng
KW - compact Hausdorff space $X$; the sup-norm algebra $C(X)$ of all complex-valued continuous functions on $X$; its closed subalgebras (called function algebras); pervasive algebras; the algebra $A(X)$ of all functions continuous on $\mathbb {S}$ and holomorphic on $\mathbb {S}\setminus X$; pervasive algebras
UR - http://eudml.org/doc/248393
ER -

References

top
  1. Hoffman K., Singer I.M., Maximal algebras of continuous functions, Acta Math. 103 (1960), 217-241. (1960) Zbl0195.13903MR0117540
  2. Gamelin T.W., Uniform Algebras, Prentice Hall, Inc., Englewood Cliffs, N.J., 1969. Zbl1118.47014MR0410387
  3. Fuka J., A remark to maximality of several function algebras (in Russian), Čas. Pěst. Mat. 93 (1968), 346-348. (1968) MR0251539
  4. Saks S., Zygmund A., Analytic Functions, Polskie Towarzystwo Matematyczne, Warszawa, 1952. Zbl0136.37301MR0055432
  5. Urysohn P.S., Sur une fonction analytique partout continue, Fund. Math. 4 (1922), 144-150. (1922) 
  6. McKissick R., A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391-395. (1963) Zbl0113.31502MR0146646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.