Pervasive algebras on planar compacts
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 3, page 491-494
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topČerych, Jan. "Pervasive algebras on planar compacts." Commentationes Mathematicae Universitatis Carolinae 40.3 (1999): 491-494. <http://eudml.org/doc/248393>.
@article{Čerych1999,
abstract = {We characterize compact sets $X$ in the Riemann sphere $\mathbb \{S\}$ not separating $\mathbb \{S\}$ for which the algebra $A(X)$ of all functions continuous on $\mathbb \{S\}$ and holomorphic on $\mathbb \{S\}\setminus X$, restricted to the set $X$, is pervasive on $X$.},
author = {Čerych, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compact Hausdorff space $X$; the sup-norm algebra $C(X)$ of all complex-valued continuous functions on $X$; its closed subalgebras (called function algebras); pervasive algebras; the algebra $A(X)$ of all functions continuous on $\mathbb \{S\}$ and holomorphic on $\mathbb \{S\}\setminus X$; pervasive algebras},
language = {eng},
number = {3},
pages = {491-494},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pervasive algebras on planar compacts},
url = {http://eudml.org/doc/248393},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Čerych, Jan
TI - Pervasive algebras on planar compacts
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 3
SP - 491
EP - 494
AB - We characterize compact sets $X$ in the Riemann sphere $\mathbb {S}$ not separating $\mathbb {S}$ for which the algebra $A(X)$ of all functions continuous on $\mathbb {S}$ and holomorphic on $\mathbb {S}\setminus X$, restricted to the set $X$, is pervasive on $X$.
LA - eng
KW - compact Hausdorff space $X$; the sup-norm algebra $C(X)$ of all complex-valued continuous functions on $X$; its closed subalgebras (called function algebras); pervasive algebras; the algebra $A(X)$ of all functions continuous on $\mathbb {S}$ and holomorphic on $\mathbb {S}\setminus X$; pervasive algebras
UR - http://eudml.org/doc/248393
ER -
References
top- Hoffman K., Singer I.M., Maximal algebras of continuous functions, Acta Math. 103 (1960), 217-241. (1960) Zbl0195.13903MR0117540
- Gamelin T.W., Uniform Algebras, Prentice Hall, Inc., Englewood Cliffs, N.J., 1969. Zbl1118.47014MR0410387
- Fuka J., A remark to maximality of several function algebras (in Russian), Čas. Pěst. Mat. 93 (1968), 346-348. (1968) MR0251539
- Saks S., Zygmund A., Analytic Functions, Polskie Towarzystwo Matematyczne, Warszawa, 1952. Zbl0136.37301MR0055432
- Urysohn P.S., Sur une fonction analytique partout continue, Fund. Math. 4 (1922), 144-150. (1922)
- McKissick R., A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391-395. (1963) Zbl0113.31502MR0146646
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.