A formula for calculation of metric dimension of converging sequences
Ladislav, Jr. Mišík; Tibor Žáčik
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 2, page 393-401
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMišík, Ladislav, Jr., and Žáčik, Tibor. "A formula for calculation of metric dimension of converging sequences." Commentationes Mathematicae Universitatis Carolinae 40.2 (1999): 393-401. <http://eudml.org/doc/248405>.
@article{Mišík1999,
abstract = {Converging sequences in metric space have Hausdorff dimension zero, but their metric dimension (limit capacity, entropy dimension, box-counting dimension, Hausdorff dimension, Kolmogorov dimension, Minkowski dimension, Bouligand dimension, respectively) can be positive. Dimensions of such sequences are calculated using a different approach for each type. In this paper, a rather simple formula for (lower, upper) metric dimension of any sequence given by a differentiable convex function, is derived.},
author = {Mišík, Ladislav, Jr., Žáčik, Tibor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {metric dimension; limit capacity; entropy dimension; box-counting dimension; Hausdorff dimension; Kolmogorov dimension; Minkowski dimension; Bouligand dimension; converging sequences; convex sequences; differentiable function; metric dimension; limit capacity; entropy dimension; Hausdorff dimension; Kolmogorov dimension},
language = {eng},
number = {2},
pages = {393-401},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A formula for calculation of metric dimension of converging sequences},
url = {http://eudml.org/doc/248405},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Mišík, Ladislav, Jr.
AU - Žáčik, Tibor
TI - A formula for calculation of metric dimension of converging sequences
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 2
SP - 393
EP - 401
AB - Converging sequences in metric space have Hausdorff dimension zero, but their metric dimension (limit capacity, entropy dimension, box-counting dimension, Hausdorff dimension, Kolmogorov dimension, Minkowski dimension, Bouligand dimension, respectively) can be positive. Dimensions of such sequences are calculated using a different approach for each type. In this paper, a rather simple formula for (lower, upper) metric dimension of any sequence given by a differentiable convex function, is derived.
LA - eng
KW - metric dimension; limit capacity; entropy dimension; box-counting dimension; Hausdorff dimension; Kolmogorov dimension; Minkowski dimension; Bouligand dimension; converging sequences; convex sequences; differentiable function; metric dimension; limit capacity; entropy dimension; Hausdorff dimension; Kolmogorov dimension
UR - http://eudml.org/doc/248405
ER -
References
top- Mišík L., Žáčik T., On some properties of the metric dimension, Comment. Math. Univ. Carolinae 31.4 (1990), 781-791. (1990) MR1091376
- Pontryagin L.S., Snirelman L.G., Sur une propriete metrique de la dimension, Annals of Math. 33 (1932), 156-162 Appendix to the Russian translation of ``Dimension Theory'' by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit. Moscow, 1948. (1932) MR1503042
- Hawkes J., Hausdorff measure, entropy and the independents of small sets, Proc. London Math. Soc. (3) 28 (1974), 700-724. (1974) MR0352412
- Besicovitch A.S., Taylor S.J., On the complementary intervals of a linear closed sets of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449-459. (1954) MR0064849
- Koçak Ş., Azcan H., Fractal dimensions of some sequences of real numbers, Do{ğ}a - Tr. J. of Mathematics 17 (1993), 298-304. (1993) MR1255026
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.