A simplified formula for calculation of metric dimension of converging sequences
Mathematica Slovaca (2005)
- Volume: 55, Issue: 3, page 363-372
- ISSN: 0232-0525
Access Full Article
topHow to cite
topŽáčik, Tibor, and Mišík, Ladislav. "A simplified formula for calculation of metric dimension of converging sequences." Mathematica Slovaca 55.3 (2005): 363-372. <http://eudml.org/doc/32025>.
@article{Žáčik2005,
author = {Žáčik, Tibor, Mišík, Ladislav},
journal = {Mathematica Slovaca},
keywords = {metric dimension; box-counting dimension; limit capacity; Kolmogorov dimension; Minkowski dimension; Bouligand dimension; entropy dimension; Hausdorff dimension; converging sequences; convex sequence; differentiable function},
language = {eng},
number = {3},
pages = {363-372},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {A simplified formula for calculation of metric dimension of converging sequences},
url = {http://eudml.org/doc/32025},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Žáčik, Tibor
AU - Mišík, Ladislav
TI - A simplified formula for calculation of metric dimension of converging sequences
JO - Mathematica Slovaca
PY - 2005
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 55
IS - 3
SP - 363
EP - 372
LA - eng
KW - metric dimension; box-counting dimension; limit capacity; Kolmogorov dimension; Minkowski dimension; Bouligand dimension; entropy dimension; Hausdorff dimension; converging sequences; convex sequence; differentiable function
UR - http://eudml.org/doc/32025
ER -
References
top- BESICOVITCH A. S.-TAYLOR S. J., On the complementary intervals of a linear closed sets of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449-459. (1954) MR0064849
- HAWKES J., Hausdorff measure, entropy and the independents of small sets, Proc. London Math. Soc. (3) 28 (1974), 700-724. (1974) MR0352412
- KOCAK S.-AZCAN H., Fractal dimensions of some sequences of real numbers, Doga Mat. 17 (1993), 298-304. (1993) Zbl0857.40002MR1255026
- KOLMOGOROV A. N.-TIKHOMIROV V. M., -entropy and -capacity of sets in functional spaces, Uspekhi Mat. Nauk 14 (1959), 3 86 (Russian); In: Amer. Math. Soc. Transl. Ser. 2 Vol. 17, Amer. Math. Soc, Providence, RI, 1961, pp. 277-364. (1959) MR0112032
- MIŠÍK L.-ŽÁČIK T., On some properties of the metric dimension, Comment. Math. Univ. Carolin. 31 (1990), 781-791. (1990) Zbl0717.54017MR1091376
- MIŠÍK L.-ŽÁČIK T., A formula for calculation of metric dimension of converging sequences, Comment. Math. Univ. Carolin. 40 (1999), 393-401. (1999) Zbl0976.54035MR1732660
- PONTRYAGIN L. S.-SNIRELMAN L. G., Sur une propriete metrique de la dimension, Ann. of Math. (2) 33 (1932), 156-162 (Appendix to the Russian translation of Dimension Theory by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit., Moscow, 1948). (1932) Zbl0003.33101MR1503042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.