A simplified formula for calculation of metric dimension of converging sequences

Tibor Žáčik; Ladislav Mišík

Mathematica Slovaca (2005)

  • Volume: 55, Issue: 3, page 363-372
  • ISSN: 0139-9918

How to cite

top

Žáčik, Tibor, and Mišík, Ladislav. "A simplified formula for calculation of metric dimension of converging sequences." Mathematica Slovaca 55.3 (2005): 363-372. <http://eudml.org/doc/32025>.

@article{Žáčik2005,
author = {Žáčik, Tibor, Mišík, Ladislav},
journal = {Mathematica Slovaca},
keywords = {metric dimension; box-counting dimension; limit capacity; Kolmogorov dimension; Minkowski dimension; Bouligand dimension; entropy dimension; Hausdorff dimension; converging sequences; convex sequence; differentiable function},
language = {eng},
number = {3},
pages = {363-372},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {A simplified formula for calculation of metric dimension of converging sequences},
url = {http://eudml.org/doc/32025},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Žáčik, Tibor
AU - Mišík, Ladislav
TI - A simplified formula for calculation of metric dimension of converging sequences
JO - Mathematica Slovaca
PY - 2005
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 55
IS - 3
SP - 363
EP - 372
LA - eng
KW - metric dimension; box-counting dimension; limit capacity; Kolmogorov dimension; Minkowski dimension; Bouligand dimension; entropy dimension; Hausdorff dimension; converging sequences; convex sequence; differentiable function
UR - http://eudml.org/doc/32025
ER -

References

top
  1. BESICOVITCH A. S.-TAYLOR S. J., On the complementary intervals of a linear closed sets of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449-459. (1954) MR0064849
  2. HAWKES J., Hausdorff measure, entropy and the independents of small sets, Proc. London Math. Soc. (3) 28 (1974), 700-724. (1974) MR0352412
  3. KOCAK S.-AZCAN H., Fractal dimensions of some sequences of real numbers, Doga Mat. 17 (1993), 298-304. (1993) Zbl0857.40002MR1255026
  4. KOLMOGOROV A. N.-TIKHOMIROV V. M., ϵ -entropy and ϵ -capacity of sets in functional spaces, Uspekhi Mat. Nauk 14 (1959), 3 86 (Russian); In: Amer. Math. Soc. Transl. Ser. 2 Vol. 17, Amer. Math. Soc, Providence, RI, 1961, pp. 277-364. (1959) MR0112032
  5. MIŠÍK L.-ŽÁČIK T., On some properties of the metric dimension, Comment. Math. Univ. Carolin. 31 (1990), 781-791. (1990) Zbl0717.54017MR1091376
  6. MIŠÍK L.-ŽÁČIK T., A formula for calculation of metric dimension of converging sequences, Comment. Math. Univ. Carolin. 40 (1999), 393-401. (1999) Zbl0976.54035MR1732660
  7. PONTRYAGIN L. S.-SNIRELMAN L. G., Sur une propriete metrique de la dimension, Ann. of Math. (2) 33 (1932), 156-162 (Appendix to the Russian translation of Dimension Theory by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit., Moscow, 1948). (1932) Zbl0003.33101MR1503042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.