Solutions to a perturbed critical semilinear equation concerning the -Laplacian in
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 4, page 679-699
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTonkes, Elliot. "Solutions to a perturbed critical semilinear equation concerning the $N$-Laplacian in $\mathbb {R}^{N}$." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 679-699. <http://eudml.org/doc/248432>.
@article{Tonkes1999,
abstract = {The aim of this paper is to study the existence of variational solutions to a nonhomogeneous elliptic equation involving the $N$-Laplacian \[ - \Delta \_N u \equiv - \operatorname\{div\} (|\nabla u|^\{N-2\} \nabla u) = e(x,u) + h(x) \text\{ in \} \Omega \]
where $u \in W_0^\{1,N\}(\mathbb \{R\}^\{N\})$, $\Omega $ is a bounded smooth domain in $\mathbb \{R\}^\{N\}$, $N \ge 2$, $e(x,u)$ is a critical nonlinearity in the sense of the Trudinger-Moser inequality and $h(x) \in (W_0^\{1,N\})^*$ is a small perturbation.},
author = {Tonkes, Elliot},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {variational methods; elliptic equations; critical growth; variational methods; elliptic equations; critical growth},
language = {eng},
number = {4},
pages = {679-699},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Solutions to a perturbed critical semilinear equation concerning the $N$-Laplacian in $\mathbb \{R\}^\{N\}$},
url = {http://eudml.org/doc/248432},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Tonkes, Elliot
TI - Solutions to a perturbed critical semilinear equation concerning the $N$-Laplacian in $\mathbb {R}^{N}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 679
EP - 699
AB - The aim of this paper is to study the existence of variational solutions to a nonhomogeneous elliptic equation involving the $N$-Laplacian \[ - \Delta _N u \equiv - \operatorname{div} (|\nabla u|^{N-2} \nabla u) = e(x,u) + h(x) \text{ in } \Omega \]
where $u \in W_0^{1,N}(\mathbb {R}^{N})$, $\Omega $ is a bounded smooth domain in $\mathbb {R}^{N}$, $N \ge 2$, $e(x,u)$ is a critical nonlinearity in the sense of the Trudinger-Moser inequality and $h(x) \in (W_0^{1,N})^*$ is a small perturbation.
LA - eng
KW - variational methods; elliptic equations; critical growth; variational methods; elliptic equations; critical growth
UR - http://eudml.org/doc/248432
ER -
References
top- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the -Laplacian, Ann. Sc. Norm. Sup. Pisa, Series 4 17 (1990), 393-413. (1990) Zbl0732.35028MR1079983
- Adimurthi, Some remarks on the Dirichlet problem with critical growth for the -Laplacian, Houston J. Math. 17 (2) (1991), 285-298. (1991) Zbl0768.35015MR1115150
- Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183
- Brezis H., Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (3) (1983), 486-490. (1983) Zbl0526.46037MR0699419
- Carleson L., Chang S-Y., On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986), 113-127. (1986) MR0878016
- Chabrowski J., On multiple solutions for the nonhomogeneous -Laplacian with a critical Sobolev exponent, Differential Integral Equations 8 (4) (1995), 705-716. (1995) Zbl0814.35033MR1306587
- Yinbin Deng, Yi Li, Existence and bifurcation of the positive solutions of a semilinear equation with critical exponent, J. Differential Equations 130 (1996), 179-200. (1996) MR1409029
- de Figueiredo D.G., Miyagaki O.H., Ruf B., Elliptic equations in with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (2) (1995), 139-153. (1995) MR1386960
- Ekeland I., On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. (1974) Zbl0286.49015MR0346619
- Kai-Ching Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc. 348 (7) (1996), 2663-2671. (1996) MR1333394
- Lions P.L., The Concentration Compactness Principle in the Calculus of Variations, part I, Rev. Mat. Iberoamericana 1 (1985), 185-201. (1985) MR0834360
- Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (11) (1971), 1077-1092. (1971) MR0301504
- Do Ó J.M.B., Semilinear Dirichlet problems for the -Laplacian in with nonlinearities in the critical growth range, Differential Integral Equations 9 (5) (1996), 967-979. (1996) MR1392090
- Rabinowitz P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, No. 65, AMS, 1986. Zbl0609.58002MR0845785
- Panda R., On semilinear Neumann problems with critical growth for the -Laplacian, Nonlinear Anal. 26 (1996), 1347-1366. (1996) Zbl0854.35045MR1377667
- Tarantello G., On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (3) (1992), 281-304. (1992) Zbl0785.35046MR1168304
- Trudinger N.S., On imbeddings into Orlicz spaces and some applications, Journal of Mathematics and Mechanics 17 (5) (1967), 473-483. (1967) Zbl0163.36402MR0216286
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.