On nonhomogeneous elliptic equations involving critical Sobolev exponent

G. Tarantello

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 3, page 281-304
  • ISSN: 0294-1449

How to cite


Tarantello, G.. "On nonhomogeneous elliptic equations involving critical Sobolev exponent." Annales de l'I.H.P. Analyse non linéaire 9.3 (1992): 281-304. <http://eudml.org/doc/78280>.

author = {Tarantello, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semilinear elliptic equation; critical Sobolev exponent; homogeneous Dirichlet problem; number of solutions},
language = {eng},
number = {3},
pages = {281-304},
publisher = {Gauthier-Villars},
title = {On nonhomogeneous elliptic equations involving critical Sobolev exponent},
url = {http://eudml.org/doc/78280},
volume = {9},
year = {1992},

AU - Tarantello, G.
TI - On nonhomogeneous elliptic equations involving critical Sobolev exponent
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 3
SP - 281
EP - 304
LA - eng
KW - semilinear elliptic equation; critical Sobolev exponent; homogeneous Dirichlet problem; number of solutions
UR - http://eudml.org/doc/78280
ER -


  1. [A.R.] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 11, 1973, pp. 349-381. Zbl0273.49063MR370183
  2. [A.E.] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathem- atics, Wiley Interscience Publications, 1984. Zbl0641.47066MR749753
  3. [B] H. Brezis, Some Variational Problems with Lack of Compactness, Proc. Symp. Pure Math., Vol. 45, part 1, F. BROWER Ed., Amer. Math. Soc., 1986, pp. 165-201. Zbl0617.35041MR843559
  4. [B.L.] H. Brezis and T. Kato, Remarks on the Schrodinger Operator with Singular Complex Potential, J. Math. Pure Appl., 58, 1979, pp. 137-151. Zbl0408.35025MR539217
  5. [B.K.] H. Brezis et E. Lieb, A Relations Between Pointwise Convergence of Functions and Convergence of Integrals, Proc. Amer. Math. Soc., Vol. 88, 1983, pp. 486-490. Zbl0526.46037MR699419
  6. [B.N.1] H. Brezis et L. Nirenberg, A Minimization Problem with Critical Exponent and Non Zero Data, in "Symmetry in Nature", Scuola Norm. Sup. Pisa, 1989, pp. 129-140. Zbl0763.46023
  7. [B.N.2] H. Brezis et L. Nirenberg, Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 437-477. Zbl0541.35029MR709644
  8. [C.S.] L. Caffarelli et J. Spruck, Variational Problems with Critical Growth and Positive Dirichlet Data (to appear). Zbl0717.35028
  9. [C.R.] M. Crandall et P. Rabinowitz, Some Continuation and Variational Method for Positive Solutions of Nonlinear Elliptic Eigenvalue Problems, Arch. Rational Mech. Anal., Vol. 58, 1975, pp. 207-218. Zbl0309.35057MR382848
  10. [F] G. Folland, Real Analysis, Wiley Interscience, N.Y., 1984. Zbl0549.28001MR767633
  11. [G.P.] N. Ghoussoub et D. Preiss, A General Mountain Pass Principle for Locating and Classifying Critical Point, Ann. I.H.P.Analyse non linéaire, Vol. 6, n° 5, 1989. pp. 321-330. Zbl0711.58008MR1030853
  12. [H.] H. Hofer, A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain Pass Theorem, J. London Math. Soc., Vol. 31, 1985, pp. 566-570. Zbl0573.58007MR812787
  13. [M.] F. Merle, Sur la non-existence de solutions positives d'équations elliptiques surlinéaires, C. R. Acad. Sci. Paris, T. 306, Serie I, 1988, pp. 313-316. Zbl0696.35062MR932345
  14. [P.] S. Pohozaev, Eigenfunctions of the Equation Δu+λf(u)=0, Soviet Math. Dokl.. Vol. 6, 1965, pp. 1408-1411. Zbl0141.30202MR192184
  15. [R.] O. Rey, Concentration of Solutions to Elliptic Equations with CriticalNonlinearity (submitted). Zbl0761.35034
  16. [S.] M. Struwe, Variational Methods and their Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Lecture notes E.T.H., Zurich, 1989. 
  17. [T.] G.. Talenti, Best Constant in Sobolev Inequality, Ann. Mat. Pure Appl., Vol. 110. 1976, pp. 353-372. Zbl0353.46018MR463908
  18. [Z.] X. Zheng, A Nonexistence Result of Positive Solutions for an Elliptic Equation. Ann. I.H.P.Analyse nonlinéaire, Vol. 7, n° 2, 1990, pp. 91-96. Zbl0719.35028MR1051229

Citations in EuDML Documents

  1. Elliot Tonkes, Solutions to a perturbed critical semilinear equation concerning the N -Laplacian in N
  2. Paul A. Binding, Pavel Drábek, Yin Xi Huang, Positive solutions of critical quasilinear elliptic equations in R N
  3. Daomin Cao, Ezzat S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in N
  4. Boumediene Abdellaoui, Veronica Felli, Ireneo Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p -Laplacian

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.