Generalized n -Laplacian: semilinear Neumann problem with the critical growth

Robert Černý

Applications of Mathematics (2013)

  • Volume: 58, Issue: 5, page 555-593
  • ISSN: 0862-7940

Abstract

top
Let Ω n , n 2 , be a bounded connected domain of the class C 1 , θ for some θ ( 0 , 1 ] . Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem u W 1 L Φ ( Ω ) , - div Φ ' ( | u | ) u | u | + V ( x ) Φ ' ( | u | ) u | u | = f ( x , u ) + μ h ( x ) in Ω , u 𝐧 = 0 on Ω , where Φ is a Young function such that the space W 1 L Φ ( Ω ) is embedded into exponential or multiple exponential Orlicz space, the nonlinearity f ( x , t ) has the corresponding critical growth, V ( x ) is a continuous potential, h ( L Φ ( Ω ) ) * is a nontrivial continuous function, μ 0 is a small parameter and 𝐧 denotes the outward unit normal to Ω .

How to cite

top

Černý, Robert. "Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth." Applications of Mathematics 58.5 (2013): 555-593. <http://eudml.org/doc/260656>.

@article{Černý2013,
abstract = {Let $\Omega \subset \mathbb \{R\}^n$, $n\ge 2$, be a bounded connected domain of the class $C^\{1,\theta \}$ for some $\theta \in (0,1]$. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem \[ \{ u\in W^1 L^\{\Phi \}(\Omega ), \quad -\operatorname\{div\}\Big (\Phi ^\{\prime \}(|\nabla u|)\frac\{\nabla u\}\{|\nabla u|\}\Big ) +V(x)\Phi ^\{\prime \}(|u|)\frac\{u\}\{|u|\}=f(x,u)+\mu h(x)\quad \text\{in\} \Omega ,\cr \frac\{\partial u\}\{\partial \{\bf n\}\}=0\quad \text\{on\} \partial \Omega ,\cr \} \] where $\Phi $ is a Young function such that the space $W^1 L^\{\Phi \}(\Omega )$ is embedded into exponential or multiple exponential Orlicz space, the nonlinearity $f(x,t)$ has the corresponding critical growth, $V(x)$ is a continuous potential, $h\in (L^\{\Phi \}(\Omega ))^*$ is a nontrivial continuous function, $\mu \ge 0$ is a small parameter and $\{\bf n\}$ denotes the outward unit normal to $\partial \Omega $.},
author = {Černý, Robert},
journal = {Applications of Mathematics},
keywords = {Orlicz-Sobolev space; Mountain Pass Theorem; Palais-Smale sequence; Ekeland Variational Principle; Orlicz-Sobolev space; mountain-pass theorem; Palais-Smale sequence; Ekeland variational principle},
language = {eng},
number = {5},
pages = {555-593},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth},
url = {http://eudml.org/doc/260656},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Černý, Robert
TI - Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 5
SP - 555
EP - 593
AB - Let $\Omega \subset \mathbb {R}^n$, $n\ge 2$, be a bounded connected domain of the class $C^{1,\theta }$ for some $\theta \in (0,1]$. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem \[ { u\in W^1 L^{\Phi }(\Omega ), \quad -\operatorname{div}\Big (\Phi ^{\prime }(|\nabla u|)\frac{\nabla u}{|\nabla u|}\Big ) +V(x)\Phi ^{\prime }(|u|)\frac{u}{|u|}=f(x,u)+\mu h(x)\quad \text{in} \Omega ,\cr \frac{\partial u}{\partial {\bf n}}=0\quad \text{on} \partial \Omega ,\cr } \] where $\Phi $ is a Young function such that the space $W^1 L^{\Phi }(\Omega )$ is embedded into exponential or multiple exponential Orlicz space, the nonlinearity $f(x,t)$ has the corresponding critical growth, $V(x)$ is a continuous potential, $h\in (L^{\Phi }(\Omega ))^*$ is a nontrivial continuous function, $\mu \ge 0$ is a small parameter and ${\bf n}$ denotes the outward unit normal to $\partial \Omega $.
LA - eng
KW - Orlicz-Sobolev space; Mountain Pass Theorem; Palais-Smale sequence; Ekeland Variational Principle; Orlicz-Sobolev space; mountain-pass theorem; Palais-Smale sequence; Ekeland variational principle
UR - http://eudml.org/doc/260656
ER -

References

top
  1. Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n -Laplacian, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17 393-413 (1990). (1990) Zbl0732.35028MR1079983
  2. Adimurthi, 10.1007/BF02874647, Proc. Indian Acad. Sci., Math. Sci. 99 49-73 (1989). (1989) MR1004638DOI10.1007/BF02874647
  3. Adimurthi, Sandeep, K., 10.1007/s00030-006-4025-9, NoDEA, Nonlinear Differ. Equ. Appl. 13 585-603 (2007). (2007) Zbl1171.35367MR2329019DOI10.1007/s00030-006-4025-9
  4. Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 349-381 (1973). (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
  5. Brézis, H., Lieb, E. H., 10.2307/2044999, Proc. Am. Math. Soc. 88 486-490 (1983). (1983) Zbl0526.46037MR0699419DOI10.2307/2044999
  6. Brézis, H., Nirenberg, L., 10.1002/cpa.3160360405, Commun. Pure Appl. Math. 36 437-477 (1983). (1983) Zbl0541.35029MR0709644DOI10.1002/cpa.3160360405
  7. Černý, R., Concentration-compactness principle for embedding into multiple exponential spaces, Math. Inequal. Appl. 15 165-198 (2012). (2012) Zbl1236.46027MR2919441
  8. Černý, R., 10.1016/j.na.2011.03.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 3419-3439 (2011). (2011) MR2803070DOI10.1016/j.na.2011.03.002
  9. Černý, R., 10.1007/s00030-011-0143-0, NoDEA, Nonlinear Differ. Equ. Appl. 19 575-608 (2012). (2012) Zbl1262.46025MR2984597DOI10.1007/s00030-011-0143-0
  10. Černý, R., 10.1007/s10587-012-0044-3, Czech. Math. J. 62 743-785 (2012). (2012) Zbl1265.46047MR2984633DOI10.1007/s10587-012-0044-3
  11. Černý, R., On the Dirichlet problem for the generalized n -Laplacian: singular nonlinearity with the exponential and multiple exponential critical growth range, Math. Inequal. Appl. 16 255-277 (2013). (2013) Zbl1273.35143MR3060395
  12. Černý, R., Gurka, P., Hencl, S., 10.1016/j.na.2011.05.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 5189-5204 (2011). (2011) Zbl1225.35062MR2810699DOI10.1016/j.na.2011.05.015
  13. Černý, R., Mašková, S., 10.1007/s10587-010-0048-9, Czech. Math. J. 60 751-782 (2010). (2010) Zbl1224.46064MR2672414DOI10.1007/s10587-010-0048-9
  14. Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B., 10.1007/BF01205003, Calc. Var. Partial Differ. Equ. 3 139-153 (1995). (1995) MR1386960DOI10.1007/BF01205003
  15. 'O, J. M. do, 10.1155/S1085337597000419, Abstr. Appl. Anal. 2 301-315 (1997). (1997) MR1704875DOI10.1155/S1085337597000419
  16. Ó, J. M. do, Medeiros, E., Severo, U., 10.1016/j.jde.2008.11.020, J. Differ. Equations 246 1363-1386 (2009). (2009) MR2488689DOI10.1016/j.jde.2008.11.020
  17. Edmunds, D. E., Gurka, P., Opic, B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 19-43 (1995). (1995) Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
  18. Edmunds, D. E., Gurka, P., Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Stud. Math. 115 151-181 (1995). (1995) Zbl0829.47024MR1347439
  19. Edmunds, D. E., Gurka, P., Opic, B., 10.1006/jfan.1996.3037, J. Funct. Anal. 146 116-150 (1997). (1997) Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
  20. Ekeland, I., 10.1016/0022-247X(74)90025-0, J. Math. Anal. Appl. 47 324-353 (1974). (1974) Zbl0286.49015MR0346619DOI10.1016/0022-247X(74)90025-0
  21. Fusco, N., Lions, P. L., Sbordone, C., 10.1090/S0002-9939-96-03136-X, Proc. Am. Math. Soc. 124 561-565 (1996). (1996) Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
  22. Hencl, S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), 196-227. (2003) Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
  23. Lions, P.-L., 10.1137/1024101, SIAM Rev. 24 (1982), 441-467. (1982) Zbl0511.35033MR0678562DOI10.1137/1024101
  24. Moser, J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 1077-1092 (1971). (1971) Zbl0213.13001MR0301504DOI10.1512/iumj.1971.20.20101
  25. Panda, R., 10.1016/0362-546X(94)00360-T, Nonlinear Anal., Theory Methods Appl. 26 1347-1366 (1996). (1996) Zbl0854.35045MR1377667DOI10.1016/0362-546X(94)00360-T
  26. Rana, I. K., An Introduction to Measure and Integration. 2nd ed. Graduate Studies in Mathematics 45, American Mathematical Society Providence (2002). (2002) MR1934675
  27. Tonkes, E., Solutions to a perturbed critical semilinear equation concerning the N -Laplacian in N , Commentat. Math. Univ. Carol. 40 679-699 (1999). (1999) MR1756545
  28. Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 473-483 (1967). (1967) Zbl0163.36402MR0216286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.