Generalized -Laplacian: semilinear Neumann problem with the critical growth
Applications of Mathematics (2013)
- Volume: 58, Issue: 5, page 555-593
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topČerný, Robert. "Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth." Applications of Mathematics 58.5 (2013): 555-593. <http://eudml.org/doc/260656>.
@article{Černý2013,
abstract = {Let $\Omega \subset \mathbb \{R\}^n$, $n\ge 2$, be a bounded connected domain of the class $C^\{1,\theta \}$ for some $\theta \in (0,1]$. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem \[ \{ u\in W^1 L^\{\Phi \}(\Omega ), \quad -\operatorname\{div\}\Big (\Phi ^\{\prime \}(|\nabla u|)\frac\{\nabla u\}\{|\nabla u|\}\Big ) +V(x)\Phi ^\{\prime \}(|u|)\frac\{u\}\{|u|\}=f(x,u)+\mu h(x)\quad \text\{in\} \Omega ,\cr \frac\{\partial u\}\{\partial \{\bf n\}\}=0\quad \text\{on\} \partial \Omega ,\cr \} \]
where $\Phi $ is a Young function such that the space $W^1 L^\{\Phi \}(\Omega )$ is embedded into exponential or multiple exponential Orlicz space, the nonlinearity $f(x,t)$ has the corresponding critical growth, $V(x)$ is a continuous potential, $h\in (L^\{\Phi \}(\Omega ))^*$ is a nontrivial continuous function, $\mu \ge 0$ is a small parameter and $\{\bf n\}$ denotes the outward unit normal to $\partial \Omega $.},
author = {Černý, Robert},
journal = {Applications of Mathematics},
keywords = {Orlicz-Sobolev space; Mountain Pass Theorem; Palais-Smale sequence; Ekeland Variational Principle; Orlicz-Sobolev space; mountain-pass theorem; Palais-Smale sequence; Ekeland variational principle},
language = {eng},
number = {5},
pages = {555-593},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth},
url = {http://eudml.org/doc/260656},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Černý, Robert
TI - Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 5
SP - 555
EP - 593
AB - Let $\Omega \subset \mathbb {R}^n$, $n\ge 2$, be a bounded connected domain of the class $C^{1,\theta }$ for some $\theta \in (0,1]$. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem \[ { u\in W^1 L^{\Phi }(\Omega ), \quad -\operatorname{div}\Big (\Phi ^{\prime }(|\nabla u|)\frac{\nabla u}{|\nabla u|}\Big ) +V(x)\Phi ^{\prime }(|u|)\frac{u}{|u|}=f(x,u)+\mu h(x)\quad \text{in} \Omega ,\cr \frac{\partial u}{\partial {\bf n}}=0\quad \text{on} \partial \Omega ,\cr } \]
where $\Phi $ is a Young function such that the space $W^1 L^{\Phi }(\Omega )$ is embedded into exponential or multiple exponential Orlicz space, the nonlinearity $f(x,t)$ has the corresponding critical growth, $V(x)$ is a continuous potential, $h\in (L^{\Phi }(\Omega ))^*$ is a nontrivial continuous function, $\mu \ge 0$ is a small parameter and ${\bf n}$ denotes the outward unit normal to $\partial \Omega $.
LA - eng
KW - Orlicz-Sobolev space; Mountain Pass Theorem; Palais-Smale sequence; Ekeland Variational Principle; Orlicz-Sobolev space; mountain-pass theorem; Palais-Smale sequence; Ekeland variational principle
UR - http://eudml.org/doc/260656
ER -
References
top- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the -Laplacian, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17 393-413 (1990). (1990) Zbl0732.35028MR1079983
- Adimurthi, 10.1007/BF02874647, Proc. Indian Acad. Sci., Math. Sci. 99 49-73 (1989). (1989) MR1004638DOI10.1007/BF02874647
- Adimurthi, Sandeep, K., 10.1007/s00030-006-4025-9, NoDEA, Nonlinear Differ. Equ. Appl. 13 585-603 (2007). (2007) Zbl1171.35367MR2329019DOI10.1007/s00030-006-4025-9
- Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 349-381 (1973). (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
- Brézis, H., Lieb, E. H., 10.2307/2044999, Proc. Am. Math. Soc. 88 486-490 (1983). (1983) Zbl0526.46037MR0699419DOI10.2307/2044999
- Brézis, H., Nirenberg, L., 10.1002/cpa.3160360405, Commun. Pure Appl. Math. 36 437-477 (1983). (1983) Zbl0541.35029MR0709644DOI10.1002/cpa.3160360405
- Černý, R., Concentration-compactness principle for embedding into multiple exponential spaces, Math. Inequal. Appl. 15 165-198 (2012). (2012) Zbl1236.46027MR2919441
- Černý, R., 10.1016/j.na.2011.03.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 3419-3439 (2011). (2011) MR2803070DOI10.1016/j.na.2011.03.002
- Černý, R., 10.1007/s00030-011-0143-0, NoDEA, Nonlinear Differ. Equ. Appl. 19 575-608 (2012). (2012) Zbl1262.46025MR2984597DOI10.1007/s00030-011-0143-0
- Černý, R., 10.1007/s10587-012-0044-3, Czech. Math. J. 62 743-785 (2012). (2012) Zbl1265.46047MR2984633DOI10.1007/s10587-012-0044-3
- Černý, R., On the Dirichlet problem for the generalized -Laplacian: singular nonlinearity with the exponential and multiple exponential critical growth range, Math. Inequal. Appl. 16 255-277 (2013). (2013) Zbl1273.35143MR3060395
- Černý, R., Gurka, P., Hencl, S., 10.1016/j.na.2011.05.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 5189-5204 (2011). (2011) Zbl1225.35062MR2810699DOI10.1016/j.na.2011.05.015
- Černý, R., Mašková, S., 10.1007/s10587-010-0048-9, Czech. Math. J. 60 751-782 (2010). (2010) Zbl1224.46064MR2672414DOI10.1007/s10587-010-0048-9
- Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B., 10.1007/BF01205003, Calc. Var. Partial Differ. Equ. 3 139-153 (1995). (1995) MR1386960DOI10.1007/BF01205003
- 'O, J. M. do, 10.1155/S1085337597000419, Abstr. Appl. Anal. 2 301-315 (1997). (1997) MR1704875DOI10.1155/S1085337597000419
- Ó, J. M. do, Medeiros, E., Severo, U., 10.1016/j.jde.2008.11.020, J. Differ. Equations 246 1363-1386 (2009). (2009) MR2488689DOI10.1016/j.jde.2008.11.020
- Edmunds, D. E., Gurka, P., Opic, B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 19-43 (1995). (1995) Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
- Edmunds, D. E., Gurka, P., Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Stud. Math. 115 151-181 (1995). (1995) Zbl0829.47024MR1347439
- Edmunds, D. E., Gurka, P., Opic, B., 10.1006/jfan.1996.3037, J. Funct. Anal. 146 116-150 (1997). (1997) Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
- Ekeland, I., 10.1016/0022-247X(74)90025-0, J. Math. Anal. Appl. 47 324-353 (1974). (1974) Zbl0286.49015MR0346619DOI10.1016/0022-247X(74)90025-0
- Fusco, N., Lions, P. L., Sbordone, C., 10.1090/S0002-9939-96-03136-X, Proc. Am. Math. Soc. 124 561-565 (1996). (1996) Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
- Hencl, S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), 196-227. (2003) Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
- Lions, P.-L., 10.1137/1024101, SIAM Rev. 24 (1982), 441-467. (1982) Zbl0511.35033MR0678562DOI10.1137/1024101
- Moser, J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 1077-1092 (1971). (1971) Zbl0213.13001MR0301504DOI10.1512/iumj.1971.20.20101
- Panda, R., 10.1016/0362-546X(94)00360-T, Nonlinear Anal., Theory Methods Appl. 26 1347-1366 (1996). (1996) Zbl0854.35045MR1377667DOI10.1016/0362-546X(94)00360-T
- Rana, I. K., An Introduction to Measure and Integration. 2nd ed. Graduate Studies in Mathematics 45, American Mathematical Society Providence (2002). (2002) MR1934675
- Tonkes, E., Solutions to a perturbed critical semilinear equation concerning the -Laplacian in , Commentat. Math. Univ. Carol. 40 679-699 (1999). (1999) MR1756545
- Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 473-483 (1967). (1967) Zbl0163.36402MR0216286
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.