Linear Stieltjes integral equations in Banach spaces
Mathematica Bohemica (1999)
- Volume: 124, Issue: 4, page 433-457
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topReferences
top- Dunford N., Schwartz J. T., Linear Operators I., Interscience Publishers, New York, London, 1958. (1958) Zbl0084.10402MR0117523
- Hönig, Ch. S., Volterra-Stieltjes Integral Equations, North-Holland Publ. Comp., Amsterdam, 1975. (1975) MR0499969
- Kurzweil J., Nichtabsolut konvergente Integrale, B. G.Teubner Verlagsgesellschaft, Leipzig, 1980. (1980) Zbl0441.28001MR0597703
- Rudin W., Functional Analysis, McGraw-Hill Book Company, New York, 1973. (1973) Zbl0253.46001MR0365062
- Schwabik Š., Abstract Perron-Stieltjes integral, Math. Bohem. 121 (1996), 425-447. (1996) Zbl0879.28021MR1428144
- Schwabik Š., Generalized Ordinary Differential Equations, World Scientific, Singapore, 1992. (1992) Zbl0781.34003MR1200241
- Schwabik Š., Tvrdý M., Vejvoda O., Differential and Integral Equations, Academia & Reidel, Praha & Dordrecht, 1979. (1979) MR0542283
Citations in EuDML Documents
top- Dana Fraňková, Regulated functions with values in Banach space
- Štefan Schwabik, Linear Stieltjes integral equations in Banach spaces. II. Operator valued solutions
- Štefan Schwabik, Operator-valued functions of bounded semivariation and convolutions
- Štefan Schwabik, A note on integration by parts for abstract Perron-Stieltjes integrals
- Giselle A. Monteiro, Milan Tvrdý, On Kurzweil-Stieltjes integral in a Banach space
- Umi Mahnuna Hanung, Milan Tvrdý, On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil
- Rodolfo Collegari, Márcia Federson, Miguel Frasson, Linear FDEs in the frame of generalized ODEs: variation-of-constants formula
- Umi Mahnuna Hanung, Role of the Harnack extension principle in the Kurzweil-Stieltjes integral