On Kurzweil-Stieltjes integral in a Banach space
Giselle A. Monteiro; Milan Tvrdý
Mathematica Bohemica (2012)
- Volume: 137, Issue: 4, page 365-381
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMonteiro, Giselle A., and Tvrdý, Milan. "On Kurzweil-Stieltjes integral in a Banach space." Mathematica Bohemica 137.4 (2012): 365-381. <http://eudml.org/doc/246217>.
@article{Monteiro2012,
abstract = {In the paper we deal with the Kurzweil-Stieltjes integration of functions having values in a Banach space $X.$ We extend results obtained by Štefan Schwabik and complete the theory so that it will be well applicable to prove results on the continuous dependence of solutions to generalized linear differential equations in a Banach space. By Schwabik, the integral $\int _a^b \{\rm d\}[F]g$ exists if $F\colon [a,b]\rightarrow L(X)$ has a bounded semi-variation on $[a,b]$ and $g\colon [a,b]\rightarrow X$ is regulated on $[a,b].$ We prove that this integral has sense also if $F$ is regulated on $[a,b]$ and $g$ has a bounded semi-variation on $[a,b].$ Furthermore, the integration by parts theorem is presented under the assumptions not covered by Schwabik (2001) and Naralenkov (2004), and the substitution formula is proved.},
author = {Monteiro, Giselle A., Tvrdý, Milan},
journal = {Mathematica Bohemica},
keywords = {Kurzweil-Stieltjes integral; substitution formula; integration-by-parts; Kurzweil-Stieltjes integral; substitution formula; integration-by-parts},
language = {eng},
number = {4},
pages = {365-381},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Kurzweil-Stieltjes integral in a Banach space},
url = {http://eudml.org/doc/246217},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Monteiro, Giselle A.
AU - Tvrdý, Milan
TI - On Kurzweil-Stieltjes integral in a Banach space
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 4
SP - 365
EP - 381
AB - In the paper we deal with the Kurzweil-Stieltjes integration of functions having values in a Banach space $X.$ We extend results obtained by Štefan Schwabik and complete the theory so that it will be well applicable to prove results on the continuous dependence of solutions to generalized linear differential equations in a Banach space. By Schwabik, the integral $\int _a^b {\rm d}[F]g$ exists if $F\colon [a,b]\rightarrow L(X)$ has a bounded semi-variation on $[a,b]$ and $g\colon [a,b]\rightarrow X$ is regulated on $[a,b].$ We prove that this integral has sense also if $F$ is regulated on $[a,b]$ and $g$ has a bounded semi-variation on $[a,b].$ Furthermore, the integration by parts theorem is presented under the assumptions not covered by Schwabik (2001) and Naralenkov (2004), and the substitution formula is proved.
LA - eng
KW - Kurzweil-Stieltjes integral; substitution formula; integration-by-parts; Kurzweil-Stieltjes integral; substitution formula; integration-by-parts
UR - http://eudml.org/doc/246217
ER -
References
top- Federson, M., Substitution formulas for the Kurzweil and Henstock vector integrals, Math. Bohem. 127 (2002), 15-26. (2002) Zbl1002.28012MR1895242
- Federson, M., Bianconi, R., Barbanti, L., 10.1007/s10255-004-0200-0, Acta Math. Appl. Sin. Engl. Ser. 20 (2004), 623-640. (2004) Zbl1067.45005MR2173638DOI10.1007/s10255-004-0200-0
- Federson, M., Táboas, P., 10.1016/S0022-0396(03)00061-5, J. Differ. Equations 195 (2003), 313-331. (2003) Zbl1054.34102MR2016815DOI10.1016/S0022-0396(03)00061-5
- Hönig, Ch. S., Volterra Stieltjes-Integral Equations, North Holland and American Elsevier, Mathematics Studies 16. Amsterdam and New York (1975). (1975) MR0499969
- Monteiro, G. A., Tvrdý, M., Generalized linear differential equations in a Banach space: Continuous dependence on a parameter, Discrete Contin. Dyn. Syst. 33 (2013), 283-303. (2013) MR2972960
- Naralenkov, K. M., 10.14321/realanalexch.30.1.0235, Real Anal. Exch. 30 (2004/2005), 235-260. (2004) MR2127529DOI10.14321/realanalexch.30.1.0235
- Schwabik, Š., Generalized Ordinary Differential Equations, World Scientific. Singapore (1992). (1992) Zbl0781.34003MR1200241
- Schwabik, Š., Abstract Perron-Stieltjes integral, Math. Bohem. 121 (1996), 425-447. (1996) Zbl0879.28021MR1428144
- Schwabik, Š., Linear Stieltjes integral equations in Banach spaces, Math. Bohem. 124 (1999), 433-457. (1999) Zbl0937.34047MR1722877
- Schwabik, Š., Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions, Math. Bohem. 125 (2000), 431-454. (2000) Zbl0974.34057MR1802292
- Schwabik, Š., A note on integration by parts for abstract Perron-Stieltjes integrals, Math. Bohem. 126 (2001), 613-629. (2001) Zbl0980.26005MR1970264
- Schwabik, Š., Operator-valued functions of bounded semivariation and convolutions, Math. Bohem. 126 (2001), 745-777. (2001) Zbl1001.26005MR1869466
- Schwabik, Š., Ye, G., Topics in Banach Space Integration, World Scientific. Singapore (2005). (2005) Zbl1088.28008MR2167754
- Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and Integral Equations: Boundary Value Problems and Adjoints, Academia and Reidel, Praha and Dordrecht (1979). (1979) Zbl0417.45001MR0542283
- Tvrdý, M., Regulated functions and the Perron-Stieltjes integral, Čas. Pěst. Mat. 114 (1989), 187-209. (1989) MR1063765
- Tvrdý, M., Differential and integral equations in the space of regulated functions, Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. (2002) Zbl1081.34504MR1903190
- McLeod, R.M., The Generalized Riemann Integral, Carus Monographs, Mathematical Association of America, Washington, 1980. Zbl0486.26005MR0588510
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.