Invariants of a quadratic form attached to a tame covering of schemes

Philippe Cassou-Noguès; Boas Erez; Martin J. Taylor

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 2, page 597-660
  • ISSN: 1246-7405

Abstract

top
We build on preceeding work of Serre, Esnault-Kahn-Viehweg and Kahn to establish a relation between invariants, in modulo 2 étale cohomology, attached to a tamely ramified covering of schemes with odd ramification indices. The first type of invariant is constructed using a natural quadratic form obtained from the covering. In the case of an extension of Dedekind domains, mains, this form is the square root of the inverse different equipped with the trace form. In the case of a covering of Riemann surfaces, it arises from a theta characteristic. The second type of invariant is constructed using the representation of the tame fundamental group, which corresponds to the covering. Our formula is valid in arbitrary dimension. For unramified coverings the result was proved by the above authors. The two main contributions of our work consist in (1) showing how to eliminate ramification to reduce to the unramified case, in such a way that the reduction is possible in arbitrary dimension, and; (2) getting around the difficulties, caused by the presence of crossings in the ramification divisor, by introducing what we call “normalisation along a divisor”. Our approach relies on a detailed analysis of the local structure of tame coverings. We include a review of the relevant material from the theory of quadratic forms on schemes and of the basic simplicial techniques needed for our purposes.

How to cite

top

Cassou-Noguès, Philippe, Erez, Boas, and Taylor, Martin J.. "Invariants of a quadratic form attached to a tame covering of schemes." Journal de théorie des nombres de Bordeaux 12.2 (2000): 597-660. <http://eudml.org/doc/248516>.

@article{Cassou2000,
abstract = {We build on preceeding work of Serre, Esnault-Kahn-Viehweg and Kahn to establish a relation between invariants, in modulo 2 étale cohomology, attached to a tamely ramified covering of schemes with odd ramification indices. The first type of invariant is constructed using a natural quadratic form obtained from the covering. In the case of an extension of Dedekind domains, mains, this form is the square root of the inverse different equipped with the trace form. In the case of a covering of Riemann surfaces, it arises from a theta characteristic. The second type of invariant is constructed using the representation of the tame fundamental group, which corresponds to the covering. Our formula is valid in arbitrary dimension. For unramified coverings the result was proved by the above authors. The two main contributions of our work consist in (1) showing how to eliminate ramification to reduce to the unramified case, in such a way that the reduction is possible in arbitrary dimension, and; (2) getting around the difficulties, caused by the presence of crossings in the ramification divisor, by introducing what we call “normalisation along a divisor”. Our approach relies on a detailed analysis of the local structure of tame coverings. We include a review of the relevant material from the theory of quadratic forms on schemes and of the basic simplicial techniques needed for our purposes.},
author = {Cassou-Noguès, Philippe, Erez, Boas, Taylor, Martin J.},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {597-660},
publisher = {Université Bordeaux I},
title = {Invariants of a quadratic form attached to a tame covering of schemes},
url = {http://eudml.org/doc/248516},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Cassou-Noguès, Philippe
AU - Erez, Boas
AU - Taylor, Martin J.
TI - Invariants of a quadratic form attached to a tame covering of schemes
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 597
EP - 660
AB - We build on preceeding work of Serre, Esnault-Kahn-Viehweg and Kahn to establish a relation between invariants, in modulo 2 étale cohomology, attached to a tamely ramified covering of schemes with odd ramification indices. The first type of invariant is constructed using a natural quadratic form obtained from the covering. In the case of an extension of Dedekind domains, mains, this form is the square root of the inverse different equipped with the trace form. In the case of a covering of Riemann surfaces, it arises from a theta characteristic. The second type of invariant is constructed using the representation of the tame fundamental group, which corresponds to the covering. Our formula is valid in arbitrary dimension. For unramified coverings the result was proved by the above authors. The two main contributions of our work consist in (1) showing how to eliminate ramification to reduce to the unramified case, in such a way that the reduction is possible in arbitrary dimension, and; (2) getting around the difficulties, caused by the presence of crossings in the ramification divisor, by introducing what we call “normalisation along a divisor”. Our approach relies on a detailed analysis of the local structure of tame coverings. We include a review of the relevant material from the theory of quadratic forms on schemes and of the basic simplicial techniques needed for our purposes.
LA - eng
UR - http://eudml.org/doc/248516
ER -

References

top
  1. [A-B-S] M.F. Atiyah, R. Bott, A. Shapiro, Clifford modules. Topology3 (1964) suppl.1, 3-38. Zbl0146.19001MR167985
  2. [Ba1] P. Balmer, Triangular Witt groups. Part I: the 12-term localization exact sequence. K-Theory19 (2000), 311-363. Zbl0953.18003MR1763933
  3. [Ba2] P. Balmer, Triangular Witt groups. Part II: from usual to derived. Preprint 1999. Zbl1004.18010MR1706376
  4. [B-O] J. Barge, M. Ojanguren, Sur le troisième invariant d'une forme quadratique. K-Theory9 (1995), no. 3, 233-244. Zbl0837.11022MR1344140
  5. [Be] E.R. Berlekamp, An analog of the discriminant over fields of characteristic two, J. of Algebra38 (1976), 315-317. Zbl0327.12101MR404197
  6. [Ber-M] A.-M. Bergé, J. Martinet, Formes quadratiques et extensions en caractéristique 2, Séminaire de Théorie des Nombres de Bordeaux, Exposé 35, année 1982-1983. Zbl0539.10018MR750336
  7. [Br] K.S. Brown, Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc.186 (1974), 419-458. Zbl0245.55007MR341469
  8. [Ca] C. Casanova, Invariants des formes quadratiques à valeurs dans la K-théorie et dans la cohomologie étale. Thèse de doctorat, Université de Lausanne, 1999. 
  9. [C-E] T. Chinburg, B. Erez, Equivariant Euler-Poincaré characteristics and tameness. Journées Arithmétiques, 1991. Astérisque209 (1992), 13, 179-194. Zbl0796.11051MR1211011
  10. [CEPT1] T. Chinburg, B. Erez, G. Pappas, M.J. Taylor, Tame actions of group schemes: integrals and slices. Duke Math. J.82 (1996), no. 2, 269-308. Zbl0907.14021MR1387229
  11. [CEPT2] T. Chinburg, B. Erez, G. Pappas, M.J. Taylor, ∈-constants and the Galois structure of de Rham cohomology. Ann. of Math. (2)146 (1997), no. 2, 411-447. Zbl0939.14009
  12. [C-P-T1] T. Chinburg, G. Pappas, M.J. Taylor, ∈-constants and equivariant Arakelov Euler characteristics. Preprint, 2000. 
  13. [C-P-T2] T. Chinburg, G. Pappas, M.J. Taylor, Discriminants and Arakelov Euler characteristics. Preprint, 2000. MR1956228
  14. [Cu] E.B. Curtis, Simplicial homotopy theory. Advances in Math.6 (1971), 107-209. Zbl0225.55002MR279808
  15. [Deg] J.-Y. Degos, Classes caractéristiques de représentations galoisiennes et invariants d'algèbres étales sur un corps de caractéristique 2, Thèse, Univ. Bordeaux1, 2000. 
  16. [Del] P. Deligne, Quadriques. Exposé XII in Groupes de monodromie en géométrie algébrique. II. SGA 7 II. Dirigé par P. Deligne et N. Katz. Lecture Notes in Mathematics, 340. Springer-Verlag, Berlin-New York, 1973. Zbl0266.14019MR354657
  17. [Dz] A. Delzant, Définition des classes de Stiefel-Whitney d'un module quadratique sur un corps de caractéristique différente de 2. C. R. Acad. Sci. Paris255 (1962), 1366-1368. Zbl0108.04303MR142606
  18. [D-G] M. Demazure, P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Avec un appendice Corps de classes local par Michiel Hazewinkel. Masson et Cie, Editeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. Zbl0203.23401MR302656
  19. [EGAI] A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, I: Le langage des schemas, second edition, Grundleheren der Math. Wiss.166, Springer, Berlin, 1971. Zbl0203.23301
  20. [EGAII] A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, II: Etude globale élémentaire de quelques classes de morphismes, Inst. Hautes Etudes Sci. Publ. Math.8 (1961). Zbl0118.36206MR217084
  21. [EGAIV] A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, IV: Etude locale des schémas et des morphismes de schémas, Inst. Hautes Etudes Sci. Publ. Math.20, 24, 28, 32 (1964-1967). Zbl0136.15901MR173675
  22. [E1] B. Erez, A survey of recent work on the square root of the inverse different. Journées Arithmétiques, 1989. Astérisque198-200 (1991), 133-152 (1992). Zbl0752.11048MR1144319
  23. [E2] B. Erez, Geometric trends in Galois module theory., 116-145, in Galois representations and arithmetic algebraic geometry, eds A.J. Scholl and R.L. Taylor, LMS Lecture Notes 254, Cambridge University Press, Cambridge, 1998. Zbl0931.11047MR1696473
  24. [E-T] B. Erez, M.J. Taylor, Hermitian modules in Galois extensions of number fields and Adams operations. Ann. of Math.135 (1992), no. 2, 271-296. Zbl0756.11035MR1154594
  25. [E-K-V] H. Esnault, B. Kahn, E. Viehweg, Coverings with odd ramification and Stiefel-Whitney classes. J. reine angew. Math.441 (1993), 145-188. Zbl0772.57028MR1228615
  26. [E-K-L-V] H. Esnault, B. Kahn, M. Levine, E. Viehweg, The Arason invariant and mod 2 algebraic cycles. J. Amer. Math. Soc.11 (1998), no. 1, 73-118. Zbl1025.11009MR1460391
  27. [F-P] E. Friedlander, B. Parshall, Etale cohomology of reductive groups, Lect. Notes in Math. 854 (1981), 127-140, Springer, Berlin. Zbl0495.14029MR618302
  28. [F1] A. Fröhlich, Galois module structure of algebraic integers. Ergebnisse der Math. und ihrer Grenzgebiete (3) 1. Springer-Verlag, Berlin-New York, 1983. Zbl0501.12012MR717033
  29. [F] A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants. J. reine angew. Math.360 (1985), 84-123. Zbl0556.12005MR799658
  30. [G-Z] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory. Erg. der Math. und ihrer Grenzgebiete, 35Springer-Verlag New York, Inc., New York1967 Zbl0186.56802MR210125
  31. [G1] C.H. Giffen, Hasse-Witt invariants for (α, u)-reflexive forms and automorphisms. I. Algebraic K2-valued Hasse-Witt invariants. J. Algebra44 (1977), no. 2, 434-456. Zbl0354.16012
  32. [G2] C.H. Giffen, Hermitian forms and higher algebraic K-theory. Bull. Amer. Math. Soc.83 (1977), no. 6, 1303-1305. Zbl0373.18009MR506031
  33. [Gil] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory. Adv. in Math.40 (1981), 203-289. Zbl0478.14010MR624666
  34. [Gir] J. Giraud, Cohomologie non abélienne. Grundlehren der Math. Wiss.179, Springer, Berlin, 1971. Zbl0226.14011MR344253
  35. [Go-Ja] P.G. Goerss, J.F. Jardine, Simplicial homotopy theory. Progress in Mathematics, 174. Birkhäuser Verlag, Basel, 1999. Zbl0949.55001MR1711612
  36. [Gr] A. Grothendieck, Classes de Chern et représentations linéaires des groupes discrets. Dix Exposés sur la Cohomologie des Schémas, pp. 215-305, North-Holland, Amsterdam; Masson, Paris, 1968. Zbl0198.26101MR265370
  37. [Gr-M] A. Grothendieck, J.P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme. Lect. Notes in Math., 208. Springer-Verlag, Berlin-New York, 1971. Zbl0216.33001MR316453
  38. [Ha] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, 52. Springer-Verlag, New York-Heidelberg, 1977. Zbl0367.14001MR463157
  39. [J1] J.F. Jardine, Universal Hasse-Witt classes. Algebraic K-theory and algebraic number theory, 83-100, Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989. Zbl0677.18010MR991977
  40. [J2] J.F. Jardine, Cohomological invariants associated to symmetric bilinear forms. Exposition. Math.10 (1992), no. 2, 97-134. Zbl0761.12003MR1164528
  41. [J3] J.F. Jardine, Homotopy and homotopical algebra, in Handbook of algebra, Vol. 1, 639-669, North-Holland, Amsterdam, 1996. Zbl0883.18001MR1421814
  42. [J4] J.F. Jardine, Higher spinor classes. Mem. Amer. Math. Soc.528 (1994). Zbl0813.11023MR1211372
  43. [J5] J.F. Jardine, Simplicial objects in a Grothendieck topos. Contemporary Math.55 (I)(1986), 193-239. Zbl0606.18006MR862637
  44. [K] B. Kahn, Equivariant Stiefel-Whitney classes. J. Pure Appl. Algebra97 (1994), no. 2, 163-188. Zbl0861.55022MR1312760
  45. [Ka-M] N. Katz, B. Mazur, Arithmetic moduli of elliptic curves. Ann. of Math. Studies, Princeton Univ. Press, Princeton, 1985. Zbl0576.14026MR772569
  46. [Kne] M. Knebusch, Symmetric bilinear forms over algebraic varieties, Conference on Quadratic Forms—1976, pp. 103-283 ed. G. Orzech. Queen's Papers in Pure and Appl. Math., 46, Queen's Univ., Kingston, Ont., 1977. Zbl0408.15019MR498378
  47. [Knu] M-A. Knus, Quadratic and Hermitian forms over rings. Grundlehren der Math. Wiss.294, Springer-Verlag, Berlin, 1991. Zbl0756.11008MR1096299
  48. [K-O1] M-A. Knus, M. Ojanguren, Théorie de la descente et algèbres d'Azumaya. Lecture Notes in Math., 389. Springer-Verlag, Berlin-New York, 1974. Zbl0284.13002MR417149
  49. [K-O2] M-A. Knus, M. Ojanguren, The Clifford algebra of a metabolic space. Arch. Math.56 (1991), no. 5, 440-445. Zbl0743.13002MR1100568
  50. [La] O. Laborde, Classes de Stiefel- Whitney en cohomologie étale. Colloque sur les Formes Quadratiques (Montpellier, 1975). Bull. Soc. Math. France Suppl. Mem.48 (1976), 47-51. Zbl0347.14012MR571007
  51. [L-W] R. Lee, S. Weintraub, Invariants of branched covering from the work of Serre and Mumford. Forum Math.8 (1996), no. 5, 535-568. Zbl0870.57005MR1404802
  52. [Mac] S. Maclane, Categories for the working mathematician. Graduate Texts in Math., 5. Springer-Verlag, New York-Berlin, 1971. Zbl0232.18001MR354798
  53. [Mac-Mo] S. Maclane, I. Moerdijk, Sheaves in geometry and logic. A first introduction to topos theory. Corrected reprint of the 1992 edition. Universitext. Springer-Verlag, New York, 1994. Zbl0822.18001MR1300636
  54. [Ma1] J.P. May, Simplicial objects in algebraic topology. Reprint of the 1967 original. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1992. Zbl0769.55001MR1206474
  55. [M-R] A. Micali, P. Revoy, Modules quadratiques, Bull. Soc. Math. France, Mémoire 63 (1979), Soc. Math. de France, Paris. Zbl0436.10011MR491775
  56. [Mi] J.S. Milne, Etale cohomology. Princeton Mathematical Series, 33. Princeton University Press, Princeton, N.J., 1980. Zbl0433.14012MR559531
  57. [M-H] J.W. Milnor, D. Husemoller, Symmetric bilinear forms. Erg. der Math. und ihrer Grenzgebiete, 73. Springer-Verlag, New York-Heidelberg, 1973. Zbl0292.10016MR506372
  58. [M-S] J.W. Milnor, J.D. Stasheff, Characteristic classes. Annals of Mathematics Studies, 76. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Zbl0298.57008MR440554
  59. [Mo] J. Morales, L'invariant de Hasse-Witt de la forme de Killing. Canad. J. Math.50 (1998), no. 6, 1323-1336. Zbl0930.11020MR1657724
  60. [Mu] D. Mumford, Abelian varieties. Tata Inst. of Fund. Res. Studies in Math., Oxford University Press, Oxford, 1970. Zbl0223.14022MR282985
  61. [O] M. Ojanguren, A splitting theorem for quadratic forms. Comment. Math. Helv.57 (1982), no. 1, 145-157. Zbl0487.13005MR672851
  62. [O-P-S] M. Ojanguren, R. Parimala, R. Sridharan, Ketu and the second invariant of a quadratic space. K-Theory7 (1993), no. 6, 501-515. Zbl0802.19004MR1268590
  63. [Pa] R. Parimala, Study of quadratic forms-some connections with geometry. Proc. of the Int. Cong. of Mathematicians, Vol. 1, 2 (Zürich, 1994), 324-332, Birkhäuser, Basel, 1995. Zbl0851.11025MR1403933
  64. [Pa-S] R. Parimala, V. Srinivas, Analogues of the Brauer group for algebras with involution. Duke Math. J.66 (1992), no. 2, 207-237. Zbl0780.13002MR1162189
  65. [Pat] R.R. Patterson, The Hasse invariant of a vector bundle. Trans. Amer. Math. Soc.150 (1970), 425-443. Zbl0201.56001MR268893
  66. [Sa] T. Saito, Note on Stiefel-Whitney class of -adic cohomology. Preprint, University of Tokyo, 1998. 
  67. [SGA4] Théorie des topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique du Bois-Marie1963- 1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Math., 269,270, 305. Springer-Verlag, Berlin-New York, 1972- 73. MR354654
  68. [Seg] G. Segal, Classifying spaces and spectral sequences. Inst. Hautes Etudes Sci. Publ. Math.34 (1968), 105-112. Zbl0199.26404MR232393
  69. [S1] J.-P. Serre, L'invariant de Witt de la forme Tr(x2). Comment. Math. Helv.59 (1984), no. 4, 651-676. Zbl0565.12014MR780081
  70. [S2] J.-P. Serre, Revêtements à ramification impaire et thêta-caractéristiques. C. R. Acad. Sci. Paris Sér. I Math.311 (1990), no. 9, 547-552. Zbl0742.14030MR1078120
  71. [St] N. Steenrod, The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 1. Princeton University Press, Princeton, N. J., 1951. Zbl0054.07103MR39258
  72. [Sw] R.G. Swan, K-theory of quadric hypersurfaces. Ann. of Math. (2) 122 (1985), no. 1, 113-153. Zbl0601.14009MR799254
  73. [Sz] M. Szyjewski, An invariant of quadratic forms over schemes. Doc. Math.1 (1996), No. 19, 449-478 (electronic). Zbl0876.11019MR1425300
  74. [W] W. Waterhouse, Discriminants of étale algebras and related structures, J. reine angew. Math.379 (1987), 209—220. Zbl0609.13006MR903641

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.