Projections from onto
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 4, page 765-771
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topJohn, Kamil. "Projections from $L(X,Y)$ onto $K(X,Y)$." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 765-771. <http://eudml.org/doc/248591>.
@article{John2000,
abstract = {Generalization of certain results in [Sap] and simplification of the proofs are given. We observe e.g.: Let $X$ and $Y$ be Banach spaces such that $X$ is weakly compactly generated Asplund space and $X^*$ has the approximation property (respectively $Y$ is weakly compactly generated Asplund space and $Y^*$ has the approximation property). Suppose that $L(X,Y)\ne K(X,Y)$ and let $1<\lambda <2$. Then $X$ (respectively $Y$) can be equivalently renormed so that any projection $P$ of $L(X,Y)$ onto $K(X,Y)$ has the sup-norm greater or equal to $\lambda $.},
author = {John, Kamil},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compact operator; approximation property; reflexive Banach space; projection; separability; compact operator; approximation property; reflexive Banach space; projection},
language = {eng},
number = {4},
pages = {765-771},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Projections from $L(X,Y)$ onto $K(X,Y)$},
url = {http://eudml.org/doc/248591},
volume = {41},
year = {2000},
}
TY - JOUR
AU - John, Kamil
TI - Projections from $L(X,Y)$ onto $K(X,Y)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 4
SP - 765
EP - 771
AB - Generalization of certain results in [Sap] and simplification of the proofs are given. We observe e.g.: Let $X$ and $Y$ be Banach spaces such that $X$ is weakly compactly generated Asplund space and $X^*$ has the approximation property (respectively $Y$ is weakly compactly generated Asplund space and $Y^*$ has the approximation property). Suppose that $L(X,Y)\ne K(X,Y)$ and let $1<\lambda <2$. Then $X$ (respectively $Y$) can be equivalently renormed so that any projection $P$ of $L(X,Y)$ onto $K(X,Y)$ has the sup-norm greater or equal to $\lambda $.
LA - eng
KW - compact operator; approximation property; reflexive Banach space; projection; separability; compact operator; approximation property; reflexive Banach space; projection
UR - http://eudml.org/doc/248591
ER -
References
top- Amir D., Lindenstrauss J., The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-59. (1968) Zbl0164.14903MR0228983
- Arterburn D., Whitney R., Projections in the space of bounded linear operators, Pacific J. Math. 15 (1965), 739-746. (1965) MR0187052
- Casazza P.G., Kalton N.J., Notes on approximation properties on separable Banach spaces, in: Geometry of Banach spaces, London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1991, pp.49-63. MR1110185
- Diestel J., Morrison T.J., The Radon-Nikodym property for the space of operators, Math. Nachr. 92 (1979), 7-12. (1979) Zbl0444.46021MR0563569
- Emmanuele G., On the containment of by spaces of compact operators, Bull. Sci. Mat. 115 (1991), 177-184. (1991) MR1101022
- Emmanuele G., A remark on the containment of in spaces of compact operators, Math. Proc. Cambridge Phil. Soc. 111 (1992), 331-335. (1992) MR1142753
- Emmanuele G., John K., Uncomplementability of spaces of compact operators in lager spaces of operators, Czechoslovak J. Math. 47 (122) (1997), 19-32. (1997) MR1435603
- Feder M., On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196-205. (1980) Zbl0411.46009MR0575060
- Feder M., On the non-existence of a projection onto the spaces of compact operators, Canad. Math. Bull. 25 (1982), 78-81. (1982) MR0657655
- Godefroy G., Saphar P., Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (4) (1988), 672-695. (1988) Zbl0631.46015MR0955384
- Godun B.V., Unconditional bases and basic sequences, Izv. Vyssh. Uchebn. Zaved. Mat 24 (1980), 69-72. (1980) MR0603941
- John K., On the space of compact operators on Pisier space P, Note di Matematica 72 (1992), 69-75. (1992) MR1258564
- John K., On the uncomplemented subspace , Czechoslovak Math. J. 42 (1992), 167-173. (1992) MR1152178
- Johnson J., Remarks on Banach spaces of compact operators, J. Funct. Analysis 32 (1979), 304-311. (1979) Zbl0412.47024MR0538857
- Kuo T.H., Projections in the space of bounded linear operators, Pacific. J. Math. 52 (1974), 475-480. (1974) MR0352939
- Kalton N.J., Spaces of compact operators, Math. Ann. 208 (1974), 267-278. (1974) Zbl0266.47038MR0341154
- Lindenstrauss J., On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967-970. (1966) Zbl0156.36403MR0205040
- Ruess W., Duality and geometry of spaces of compact operators, in Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984. Zbl0573.46007MR0761373
- Saphar P.D., Projections from onto , Proc. Amer. Math. Soc. 127 (4) (1999), 1127-1131. (1999) Zbl0912.46011MR1473679
- Singer I., Bases in Banach spaces. Vol. II, Berlin-Heidelberg-New York, Springer, 1981. MR0610799
- Thorp E., Projections onto the space of compact operators, Pacific J. Math. 10 (1960), 693-696. (1960) MR0114128
- Tong A.E., On the existence of non-compact bounded linear operators between certain Banach spaces, Israel J. Math. 10 (1971), 451-456. (1971) MR0296663
- Tong A.E., Wilken D.R., The uncomplemented subspace , Studia Math. 37 (1971), 227-236. (1971) Zbl0212.46302MR0300058
- Zippin M., Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), 371-379. (1988) Zbl0706.46015MR0965758
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.