Displaying similar documents to “Projections from L ( X , Y ) onto K ( X , Y )

Schauder bases and the bounded approximation property in separable Banach spaces

Jorge Mujica, Daniela M. Vieira (2010)

Studia Mathematica

Similarity:

Let E be a separable Banach space with the λ-bounded approximation property. We show that for each ϵ > 0 there is a Banach space F with a Schauder basis such that E is isometrically isomorphic to a 1-complemented subspace of F and, moreover, the sequence (Tₙ) of canonical projections in F has the properties s u p n | | T | | λ + ϵ and l i m s u p n | | T | | λ . This is a sharp quantitative version of a classical result obtained independently by Pełczyński and by Johnson, Rosenthal and Zippin.

On the compact approximation property

Vegard Lima, Åsvald Lima, Olav Nygaard (2004)

Studia Mathematica

Similarity:

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.

The structure of Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2009)

Studia Mathematica

Similarity:

Lindenstrauss-Pełczyński (for short ℒ) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c₀ into X can be extended to the whole c₀. Here we obtain the following structure theorem: a separable Banach space X is an ℒ-space if and only if every subspace of c₀ is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides...

Spaces of operators and c₀

P. Lewis (2001)

Studia Mathematica

Similarity:

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in X γ Y * . Applications to embeddings of c₀ in various spaces of operators are given.

The Dual of a Non-reflexive L-embedded Banach Space Contains l Isometrically

Hermann Pfitzner (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains l isometrically.

Geometry of Banach spaces and biorthogonal systems

S. Dilworth, Maria Girardi, W. Johnson (2000)

Studia Mathematica

Similarity:

A separable Banach space X contains 1 isomorphically if and only if X has a bounded fundamental total w c 0 * -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total w c 0 * -biorthogonal system.

Estimation of the Szlenk index of Banach spaces via Schreier spaces

Ryan Causey (2013)

Studia Mathematica

Similarity:

For each ordinal α < ω₁, we prove the existence of a Banach space with a basis and Szlenk index ω α + 1 which is universal for the class of separable Banach spaces with Szlenk index not exceeding ω α . Our proof involves developing a characterization of which Banach spaces embed into spaces with an FDD with upper Schreier space estimates.

On the number of non-isomorphic subspaces of a Banach space

Valentin Ferenczi, Christian Rosendal (2005)

Studia Mathematica

Similarity:

We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let be a Banach space with an unconditional basis ( e i ) i ; then either there exists a perfect set P of infinite subsets of ℕ such that for any two distinct A,B ∈ P, [ e i ] i A [ e i ] i B , or for a residual set of infinite subsets A of ℕ, [ e i ] i A is isomorphic to , and in that case, is isomorphic to its square, to its hyperplanes, uniformly isomorphic to [ e i ] i D for any D ⊂ ℕ, and isomorphic to a denumerable Schauder...

Banach spaces of bounded Szlenk index II

D. Freeman, E. Odell, Th. Schlumprecht, A. Zsák (2009)

Fundamenta Mathematicae

Similarity:

For every α < ω₁ we establish the existence of a separable Banach space whose Szlenk index is ω α ω + 1 and which is universal for all separable Banach spaces whose Szlenk index does not exceed ω α ω . In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with Tsirelson type upper estimates.

Universality, complexity and asymptotically uniformly smooth Banach spaces

Ryan M. Causey, Gilles Lancien (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For 1 < p , we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent p -asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case p = .

A note on a class of homeomorphisms between Banach spaces

Piotr Fijałkowski (2005)

Colloquium Mathematicae

Similarity:

This paper deals with homeomorphisms F: X → Y, between Banach spaces X and Y, which are of the form F ( x ) : = F ̃ x ( 2 n + 1 ) where F ̃ : X 2 n + 1 Y is a continuous (2n+1)-linear operator.

On projectional skeletons in Vašák spaces

Ondřej F. K. Kalenda (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full 1 -projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.

Factorization of vector measures and their integration operators

José Rodríguez (2016)

Colloquium Mathematicae

Similarity:

Let X be a Banach space and ν a countably additive X-valued measure defined on a σ-algebra. We discuss some generation properties of the Banach space L¹(ν) and its connection with uniform Eberlein compacta. In this way, we provide a new proof that L¹(ν) is weakly compactly generated and embeds isomorphically into a Hilbert generated Banach space. The Davis-Figiel-Johnson-Pełczyński factorization of the integration operator I ν : L ¹ ( ν ) X is also analyzed. As a result, we prove that if I ν is both completely...

On complemented copies of c₀(ω₁) in C(Kⁿ) spaces

Leandro Candido, Piotr Koszmider (2016)

Studia Mathematica

Similarity:

Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product ̂ ε n C ( K ) or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in ̂ ε n C ( K ) under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that X ̂ ε Y contains a complemented copy of c₀ if one of the infinite-dimensional...

On Banach spaces C(K) isomorphic to c₀(Γ)

Witold Marciszewski (2003)

Studia Mathematica

Similarity:

We give a characterization of compact spaces K such that the Banach space C(K) is isomorphic to the space c₀(Γ) for some set Γ. As an application we show that there exists an Eberlein compact space K of weight ω ω and with the third derived set K ( 3 ) empty such that the space C(K) is not isomorphic to any c₀(Γ). For this compactum K, the spaces C(K) and c ( ω ω ) are examples of weakly compactly generated (WCG) Banach spaces which are Lipschitz isomorphic but not isomorphic.

(Non-)amenability of ℬ(E)

Volker Runde (2010)

Banach Center Publications

Similarity:

In 1972, the late B. E. Johnson introduced the notion of an amenable Banach algebra and asked whether the Banach algebra ℬ(E) of all bounded linear operators on a Banach space E could ever be amenable if dim E = ∞. Somewhat surprisingly, this question was answered positively only very recently as a by-product of the Argyros-Haydon result that solves the “scalar plus compact problem”: there is an infinite-dimensional Banach space E, the dual of which is ℓ¹, such that ( E ) = ( E ) + i d E . Still, ℬ(ℓ²) is...

On the mutually non isomorphic l p ( l q )

Pilar Cembranos, Jose Mendoza (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this note we survey the partial results needed to show the following general theorem: l p ( l q ) : 1 p , q + is a family of mutually non isomorphic Banach spaces. We also comment some related facts and open problems.

Linearization of isometric embedding on Banach spaces

Yu Zhou, Zihou Zhang, Chunyan Liu (2015)

Studia Mathematica

Similarity:

Let X,Y be Banach spaces, f: X → Y be an isometry with f(0) = 0, and T : s p a n ¯ ( f ( X ) ) X be the Figiel operator with T f = I d X and ||T|| = 1. We present a sufficient and necessary condition for the Figiel operator T to admit a linear isometric right inverse. We also prove that such a right inverse exists when s p a n ¯ ( f ( X ) ) is weakly nearly strictly convex.

James boundaries and σ-fragmented selectors

B. Cascales, M. Muñoz, J. Orihuela (2008)

Studia Mathematica

Similarity:

We study the boundary structure for w*-compact subsets of dual Banach spaces. To be more precise, for a Banach space X, 0 < ϵ < 1 and a subset T of the dual space X* such that ⋃ B(t,ϵ): t ∈ T contains a James boundary for B X * we study different kinds of conditions on T, besides T being countable, which ensure that X * = s p a n T ¯ | | · | | . (SP) We analyze two different non-separable cases where the equality (SP) holds: (a) if J : X 2 B X * is the duality mapping and there exists a σ-fragmented map f: X → X* such that...

Compact operators whose adjoints factor through subspaces of l p

Deba P. Sinha, Anil K. Karn (2002)

Studia Mathematica

Similarity:

For p ≥ 1, a subset K of a Banach space X is said to be relatively p-compact if K n = 1 α x : α B a l l ( l p ' ) , where p’ = p/(p-1) and x l p s ( X ) . An operator T ∈ B(X,Y) is said to be p-compact if T(Ball(X)) is relatively p-compact in Y. Similarly, weak p-compactness may be defined by considering x l p w ( X ) . It is proved that T is (weakly) p-compact if and only if T* factors through a subspace of l p in a particular manner. The normed operator ideals ( K p , κ p ) of p-compact operators and ( W p , ω p ) of weakly p-compact operators, arising from these factorizations,...

On the Banach-Mazur distance between continuous function spaces with scattered boundaries

Jakub Rondoš (2023)

Czechoslovak Mathematical Journal

Similarity:

We study the dependence of the Banach-Mazur distance between two subspaces of vector-valued continuous functions on the scattered structure of their boundaries. In the spirit of a result of Y. Gordon (1970), we show that the constant 2 appearing in the Amir-Cambern theorem may be replaced by 3 for some class of subspaces. We achieve this by showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of the set of weak peak points of one of the spaces differs...

On the existence of non-linear frames

Shah Jahan, Varinder Kumar, S.K. Kaushik (2017)

Archivum Mathematicum

Similarity:

A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if 𝒳 is a Banach space such that 𝒳 * has a SRBF, then 𝒳 has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space 𝒳 has an approximative Schauder frame, then 𝒳 * has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of...