Moscow spaces, Pestov-Tkačenko Problem, and -embeddings
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 3, page 585-595
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArhangel'skii, Aleksander V.. "Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 585-595. <http://eudml.org/doc/248634>.
@article{Arhangelskii2000,
abstract = {We show that there exists an Abelian topological group $G$ such that the operations in $G$ cannot be extended to the Dieudonné completion $\mu G$ of the space $G$ in such a way that $G$ becomes a topological subgroup of the topological group $\mu G$. This provides a complete answer to a question of V.G. Pestov and M.G. Tkačenko, dating back to 1985. We also identify new large classes of topological groups for which such an extension is possible. The technique developed also allows to find many new solutions to the equation $\upsilon X\times \upsilon Y=\upsilon (X\times Y)$. The key role in the approach belongs to the notion of Moscow space which turns out to be very useful in the theory of $C$-embeddings and interacts especially well with homogeneity.},
author = {Arhangel'skii, Aleksander V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Moscow space; Dieudonné completion; Hewitt-Nachbin completion; $C$-embedding; $G_\delta $-dense set; topological group; Souslin number; tightness; canonical open set; Dieudonné completion; Rajkov completion; Hewitt-Nachbin completion; -embedding; topological group},
language = {eng},
number = {3},
pages = {585-595},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings},
url = {http://eudml.org/doc/248634},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Arhangel'skii, Aleksander V.
TI - Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 585
EP - 595
AB - We show that there exists an Abelian topological group $G$ such that the operations in $G$ cannot be extended to the Dieudonné completion $\mu G$ of the space $G$ in such a way that $G$ becomes a topological subgroup of the topological group $\mu G$. This provides a complete answer to a question of V.G. Pestov and M.G. Tkačenko, dating back to 1985. We also identify new large classes of topological groups for which such an extension is possible. The technique developed also allows to find many new solutions to the equation $\upsilon X\times \upsilon Y=\upsilon (X\times Y)$. The key role in the approach belongs to the notion of Moscow space which turns out to be very useful in the theory of $C$-embeddings and interacts especially well with homogeneity.
LA - eng
KW - Moscow space; Dieudonné completion; Hewitt-Nachbin completion; $C$-embedding; $G_\delta $-dense set; topological group; Souslin number; tightness; canonical open set; Dieudonné completion; Rajkov completion; Hewitt-Nachbin completion; -embedding; topological group
UR - http://eudml.org/doc/248634
ER -
References
top- Arhangel'skii A.V., Functional tightness, -spaces, and -embeddings, Comment. Math. Univ. Carolinae 24:1 ((1983)), 105-120. ((1983)) MR0703930
- Arhangel'skii A.V., On a Theorem of W.W. Comfort and K.A. Ross, Comment. Math. Univ. Carolinae 40:1 (1999), 133-151. (1999) MR1715207
- Arhangel'skii A.V., Topological groups and -embeddings, submitted, 1999. Zbl0984.54018
- Blair R.L., Spaces in which special sets are -embedded, Canad. J. Math. 28:4 (1976), 673-690. (1976) Zbl0359.54009MR0420542
- Blair R.L., Hager A.W., Notes on the Hewitt realcompactification of a product, Gen. Topol. and Appl. 5 (1975), 1-8. (1975) Zbl0323.54021MR0365496
- Comfort W.W., On the Hewitt realcompactification of the product space, Trans. Amer. Math. Soc. 131 (1968), 107-118. (1968) MR0222846
- Comfort W.W., Negrepontis S., Extending continuous functions on to subsets of , Fund. Math. 59 (1966), 1-12. (1966) Zbl0185.26304MR0200896
- Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16:3 (1966), 483-496. (1966) Zbl0214.28502MR0207886
- Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
- Frolík Z., The topological product of two pseudocompact spaces, Czechoslovak Math. J. 10 (1960), 339-349. (1960) MR0116304
- Gillman L., Jerison M., Rings of Continuous Functions, Princeton, 1960. Zbl0327.46040MR0116199
- Glicksberg I., Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369-382. (1959) Zbl0089.38702MR0105667
- Hewitt E., Rings of real-valued continuous functions 1., Trans. Amer. Math. Soc. 64 ((1948)), 45-99. ((1948)) MR0026239
- Hušek M., Realcompactness of function spaces and , Gen. Topol. and Appl. 2 (1972), 165-179. (1972) MR0307181
- Pestov V.G., Tkačenko M.G., Problem , in: Unsolved Problems of Topological Algebra, Academy of Science, Moldova, Kishinev, "Shtiinca" 1985, p.18.
- Roelke W., Dierolf S., Uniform Structures on Topological Groups and Their Quotients, McGraw-Hill, New York, 1981.
- Stchepin E.V., On -metrizable spaces, Izv. Akad. Nauk SSSR, Ser. Matem. 43:2 (1979), 442-478. (1979) MR0534603
- Terada T., Note on -, -, and -embedded subspaces of products, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 13 (1975), 129-132. (1975) Zbl0333.54008MR0391005
- Tkačenko M.G., The notion of -tightness and -embedded subspaces of products, Topology Appl. 15 (1983), 93-98. (1983) MR0676970
- Tkačenko M.G., Subgroups, quotient groups, and products of -factorizable groups, Topology Proc. 16 (1991), 201-231. (1991) MR1206464
- Tkačenko M.G., Introduction to Topological Groups, Topology Appl. 86:3 (1998), 179-231. (1998) MR1623960
- Uspenskij V.V., Topological groups and Dugundji spaces, Matem. Sb. 180:8 (1989), 1092-1118. (1989) MR1019483
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.