Products in almost -algebras
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 4, page 747-759
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBoulabiar, Karim. "Products in almost $f$-algebras." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 747-759. <http://eudml.org/doc/248636>.
@article{Boulabiar2000,
abstract = {Let $A$ be a uniformly complete almost $f$-algebra and a natural number $p\in \lbrace 3,4,\dots \rbrace $. Then $\Pi _\{p\}(A)= \lbrace a_\{1\}\dots a_\{p\}; a_\{k\}\in A, k=1,\dots ,p\rbrace $ is a uniformly complete semiprime $f$-algebra under the ordering and multiplication inherited from $A$ with $\Sigma _\{p\}(A)=\lbrace a^\{p\}; 0\le a\in A\rbrace $ as positive cone.},
author = {Boulabiar, Karim},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {vector lattice; uniformly complete vector lattice; lattice ordered algebra; almost $f$-algebra; $d$-algebra; $f$-algebra; uniformly complete vector lattice; lattice-ordered algebra; almost -algebra; -algebra},
language = {eng},
number = {4},
pages = {747-759},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products in almost $f$-algebras},
url = {http://eudml.org/doc/248636},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Boulabiar, Karim
TI - Products in almost $f$-algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 4
SP - 747
EP - 759
AB - Let $A$ be a uniformly complete almost $f$-algebra and a natural number $p\in \lbrace 3,4,\dots \rbrace $. Then $\Pi _{p}(A)= \lbrace a_{1}\dots a_{p}; a_{k}\in A, k=1,\dots ,p\rbrace $ is a uniformly complete semiprime $f$-algebra under the ordering and multiplication inherited from $A$ with $\Sigma _{p}(A)=\lbrace a^{p}; 0\le a\in A\rbrace $ as positive cone.
LA - eng
KW - vector lattice; uniformly complete vector lattice; lattice ordered algebra; almost $f$-algebra; $d$-algebra; $f$-algebra; uniformly complete vector lattice; lattice-ordered algebra; almost -algebra; -algebra
UR - http://eudml.org/doc/248636
ER -
References
top- Basly M., Triki A., -algébres Archimédiennes réticulées, University of Tunis, preprint, 1988. MR0964828
- Bernau S.J, Huijsmans C.B., Almost -algebras and -algebras, Math. Proc. Camb. Phil. Soc. 107 (1990), 287-308. (1990) Zbl0707.06009MR1027782
- Beukers F., Huijsmans C.B., Calculus in -algebras, J. Austral. Math. Soc. (Series A) 37 (1984), 110-116. (1984) Zbl0555.06014MR0742249
- Boulabiar K., A relationship between two almost -algebra products, Algebra Univ., to appear. Zbl1012.06022MR1785321
- Buskes G., van Rooij A., Almost -algebras: structure and the Dedekind completion, in Three papers on Riesz spaces and almost -algebras, Technical Report, Catholic University Nijmegen, Report 9526, 1995. Zbl0967.46008
- Huijsmans C.B., de Pagter B., Averaging operators and positive contractive projections, J. Math. Appl. 113 (1986), 163-184. (1986) Zbl0604.47024MR0826666
- Luxembourg W.A.J., Zaanen A.C., Riesz spaces I, North-Holland, Amsterdam, 1971.
- de Pagter B., -algebras and orthomorphisms, Thesis, Leiden, 1981.
- Zaanen A.C., Riesz spaces II, North-Holland, Amsterdam, 1983. Zbl0519.46001MR0704021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.