On condensing discrete dynamical systems
Mathematica Bohemica (2000)
- Volume: 125, Issue: 3, page 275-306
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topŠeda, Valter. "On condensing discrete dynamical systems." Mathematica Bohemica 125.3 (2000): 275-306. <http://eudml.org/doc/248655>.
@article{Šeda2000,
abstract = {In the paper the fundamental properties of discrete dynamical systems generated by an $\alpha $-condensing mapping ($\alpha $ is the Kuratowski measure of noncompactness) are studied. The results extend and deepen those obtained by M. A. Krasnosel’skij and A. V. Lusnikov in [21]. They are also applied to study a mathematical model for spreading of an infectious disease investigated by P. Takac in [35], [36].},
author = {Šeda, Valter},
journal = {Mathematica Bohemica},
keywords = {condensing discrete dynamical system; stability; singular interval; continuous branch connecting two points; continuous curve; condensing discrete dynamical system; stability; singular interval; continuous branch connecting two points; continuous curve},
language = {eng},
number = {3},
pages = {275-306},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On condensing discrete dynamical systems},
url = {http://eudml.org/doc/248655},
volume = {125},
year = {2000},
}
TY - JOUR
AU - Šeda, Valter
TI - On condensing discrete dynamical systems
JO - Mathematica Bohemica
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 125
IS - 3
SP - 275
EP - 306
AB - In the paper the fundamental properties of discrete dynamical systems generated by an $\alpha $-condensing mapping ($\alpha $ is the Kuratowski measure of noncompactness) are studied. The results extend and deepen those obtained by M. A. Krasnosel’skij and A. V. Lusnikov in [21]. They are also applied to study a mathematical model for spreading of an infectious disease investigated by P. Takac in [35], [36].
LA - eng
KW - condensing discrete dynamical system; stability; singular interval; continuous branch connecting two points; continuous curve; condensing discrete dynamical system; stability; singular interval; continuous branch connecting two points; continuous curve
UR - http://eudml.org/doc/248655
ER -
References
top- R. R. Achmerov M. I. Kamenskij A. S. Potapov, others, Measures of Noncompactness and Condensing Operators, Nauka, Novosibirsk, 1986. (In Russian.) (1986)
- H. Amann, 10.1137/1018114, Siam Rev. 18 (1976), 620-709. (1976) Zbl0345.47044MR0415432DOI10.1137/1018114
- H. Amann, Gewöhnliche Differentialgleichungen, Walter de Gruyter, Berlin, 1983. (1983) MR0713040
- J. P. Aubin A. Cellina, Differential Inclusions, Springer, Berlin, 1984. (1984) MR0755330
- L. S. Block W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math., vol. 1513, Springer, Berlin, 1992. (1992) MR1176513
- E. Čech, Point Sets, Academia, Praha, 1974. (In Czech.) (1974)
- W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, 1965. (1965) Zbl0154.09301MR0190463
- J. L. Davy, 10.1017/S0004972700044646, Bull. Austral. Math. Soc. 6 (1972), 379-398. (1972) MR0303023DOI10.1017/S0004972700044646
- K. Deimling, Nonlinear Functional Analysis and Its Applications, Springer, Berlin, 1985. (1985) MR0787404
- B. P. Demidovič, Lectures on Mathematical Theory of Stability, Nauka, Moskva, 1967. (In Russian.) (1967) MR0226126
- R. Engelking, Outline of General Topology, North-Holland Publ. Co., Amsterdam, PWN-Polish Scientific Publishers, 1968. (1968) Zbl0157.53001MR0230273
- M. Fukuhara, Sur une généralization d'un théorème de Kneser, Proc. Japan Acad. 29 (1953), 154-155. (1953) MR0060084
- L. Górniewicz D. Rozploch-Nowakowska, On the Schauder fixed point theorem, Topology in Nonlinear Analysis. Banach Center Publications, vol. 35, Inst. Math., Polish Academy of Sciences, Warszawa, 1996. (1996) MR1448438
- P. R. Halmos, Naive Set Theory, Springer, New York Inc., 1974. (1974) Zbl0287.04001MR0453532
- A. Haščák, Fixed point theorems for multivalued mappings, Czechoslovak Math. J. 35 (1985), 533-542. (1985) MR0809039
- P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics. Longman Sci and Tech., Burnt Mill, Harlow, 1991. (1991) Zbl0731.35050MR1100011
- M. A. Krasnosel'skij A. I. Perov, On the existence of solutions of certain nonlinear operator equations, Dokl. Akad. Nauk SSSR 126 (1959), 15-18. (In Russian.) (1959) MR0106421
- M. A. Krasnosel'skij G. M. Vajnikko P. P. Zabrejko, Ja. B. Rutickij V. Ja. Stecenko, Approximate Solutions of Operator Equations, Nauka, Moskva, 1969. (In Russian.) (1969)
- M. A. Krasnosel'skij P. P. Zabrejko, Geometric Methods of Nonlinear Analysis, Nauka, Moskva, 1975. (In Russian.) (1975)
- M. A. Krasnosel'skij E.A. Lifšitc A. V. Sobolev, Positive Linear Systems: Method of Positive Operators, Nauka, Moskva, 1985. (In Russian.) (1985)
- M. A. Krasnosel'skij A. V. Lusnikov, Fixed points with special properties, Dokl. Akad. Nauk 345 (1995), 303-305. (In Russian.) (1995) MR1372832
- Z. Kubáček, A generalization of N. Arouszajn's theorem on connectedness of the fixed point set of a compact mapping, Czechoslovak Math. J. 37 (1987), 415 423. (1987) MR0904769
- Z. Kubáček, On the structure of fixed point sets of some compact maps in the Fréchet space, Math. Bohem. 118 (1993), 343-358. (1993) MR1251881
- C. Kuratowski, Topologie. Vol. II, Pol. Tow. Mat., Warszawa, 1952. (1952) Zbl0049.39704MR0054232
- A. Pelczar, Introduction to Theory of Differential Equations. Part 2. Elements of the Qualitative Theory of Differential Equations, PWN. Warszawa 1989. (In Polish.) (1989)
- V. A. Pliss, Nonlocal Problems of Oscillation Theory, Nauka, Moskva, 1904. (In Russian). (1904)
- P. Poláčik I. Tereščák, 10.1007/BF00375672, Arch. Rational Mech. Anal. 116 (1991), 339-361. (1991) MR1132766DOI10.1007/BF00375672
- N. Rouche P. Habets M. Laloy, Stability Theory by Liapunov's Direct Method, Springer, New York, 1977. (1977) MR0450715
- N. Rouche J. Mawhin, Équations Différentielles Ordinaires, Tome II, Stabilité et Solutions Périodiques, Masson et Cie, Paris. 1973. (1973) MR0481182
- B. Rudolf, Existence theorems for nonlinear operator equation and some properties of the set of its solutions, Math. Slovaca 42 (1992). 55-63. (1992) MR1159491
- B. Rudolf, A periodic boundary value problem in Hilbert space, Math. Bohem. 119 (1994), 347-358. (1994) Zbl0815.34059MR1316586
- B. Rudolf, Monotone iterative technique and connectedness of solutions, Preprint. To appear.
- B. Rudolf Z. Kubáček, 10.1016/0022-247X(90)90341-C, J. Math. Anal. Appl. 46 (1990), 203-206. (1990) DOI10.1016/0022-247X(90)90341-C
- W. Sobieszek P. Kowalski, On the different deffinitions of the lower semicontinuity, upper semicontinuity, upper scmicompacity. closity and continuity of the point-to-set maps, Demonstratio Math. 11 (1978), 1059-1003. (1978) MR0529647
- P. Takáč, 10.1016/0362-546X(90)90133-2, Nonlinear Anal. 14 (1990), 35-42. (1990) MR1028245DOI10.1016/0362-546X(90)90133-2
- P. Takáč, 10.1016/0022-247X(90)90040-M, J. Math. Anal. Appl. 148 (1990), 223-244. (1990) MR1052057DOI10.1016/0022-247X(90)90040-M
- V. Šeda J. J. Nieto M. Gera, 10.1016/0096-3003(92)90019-W, Appl. Math. Comp. 48 (1992). 71-82. (1992) MR1147728DOI10.1016/0096-3003(92)90019-W
- V. Šeda Z. Kubáček, On the connectedness of the set of fixed points of a compact operator in the Fréchet space , Czechoslovak Math. J. 42 (1992), 577-588. (1992) MR1182189
- V. Šeda, Fredholm mappings and the generalized boundary value problem, Differential Integral Equations 8 (1995), 19-40. (1995) MR1296108
- T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer, New York. 1975. (1975) Zbl0304.34051MR0466797
- K. Yosida, Functional Analysis, Springer, Berlin, 1980. (1980) Zbl0435.46002MR0617913
- E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer, New York Inc., 1986. (1986) Zbl0583.47050MR0816732
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.