On condensing discrete dynamical systems

Valter Šeda

Mathematica Bohemica (2000)

  • Volume: 125, Issue: 3, page 275-306
  • ISSN: 0862-7959

Abstract

top
In the paper the fundamental properties of discrete dynamical systems generated by an α -condensing mapping ( α is the Kuratowski measure of noncompactness) are studied. The results extend and deepen those obtained by M. A. Krasnosel’skij and A. V. Lusnikov in [21]. They are also applied to study a mathematical model for spreading of an infectious disease investigated by P. Takac in [35], [36].

How to cite

top

Šeda, Valter. "On condensing discrete dynamical systems." Mathematica Bohemica 125.3 (2000): 275-306. <http://eudml.org/doc/248655>.

@article{Šeda2000,
abstract = {In the paper the fundamental properties of discrete dynamical systems generated by an $\alpha $-condensing mapping ($\alpha $ is the Kuratowski measure of noncompactness) are studied. The results extend and deepen those obtained by M. A. Krasnosel’skij and A. V. Lusnikov in [21]. They are also applied to study a mathematical model for spreading of an infectious disease investigated by P. Takac in [35], [36].},
author = {Šeda, Valter},
journal = {Mathematica Bohemica},
keywords = {condensing discrete dynamical system; stability; singular interval; continuous branch connecting two points; continuous curve; condensing discrete dynamical system; stability; singular interval; continuous branch connecting two points; continuous curve},
language = {eng},
number = {3},
pages = {275-306},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On condensing discrete dynamical systems},
url = {http://eudml.org/doc/248655},
volume = {125},
year = {2000},
}

TY - JOUR
AU - Šeda, Valter
TI - On condensing discrete dynamical systems
JO - Mathematica Bohemica
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 125
IS - 3
SP - 275
EP - 306
AB - In the paper the fundamental properties of discrete dynamical systems generated by an $\alpha $-condensing mapping ($\alpha $ is the Kuratowski measure of noncompactness) are studied. The results extend and deepen those obtained by M. A. Krasnosel’skij and A. V. Lusnikov in [21]. They are also applied to study a mathematical model for spreading of an infectious disease investigated by P. Takac in [35], [36].
LA - eng
KW - condensing discrete dynamical system; stability; singular interval; continuous branch connecting two points; continuous curve; condensing discrete dynamical system; stability; singular interval; continuous branch connecting two points; continuous curve
UR - http://eudml.org/doc/248655
ER -

References

top
  1. R. R. Achmerov M. I. Kamenskij A. S. Potapov, others, Measures of Noncompactness and Condensing Operators, Nauka, Novosibirsk, 1986. (In Russian.) (1986) 
  2. H. Amann, 10.1137/1018114, Siam Rev. 18 (1976), 620-709. (1976) Zbl0345.47044MR0415432DOI10.1137/1018114
  3. H. Amann, Gewöhnliche Differentialgleichungen, Walter de Gruyter, Berlin, 1983. (1983) MR0713040
  4. J. P. Aubin A. Cellina, Differential Inclusions, Springer, Berlin, 1984. (1984) MR0755330
  5. L. S. Block W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math., vol. 1513, Springer, Berlin, 1992. (1992) MR1176513
  6. E. Čech, Point Sets, Academia, Praha, 1974. (In Czech.) (1974) 
  7. W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, 1965. (1965) Zbl0154.09301MR0190463
  8. J. L. Davy, 10.1017/S0004972700044646, Bull. Austral. Math. Soc. 6 (1972), 379-398. (1972) MR0303023DOI10.1017/S0004972700044646
  9. K. Deimling, Nonlinear Functional Analysis and Its Applications, Springer, Berlin, 1985. (1985) MR0787404
  10. B. P. Demidovič, Lectures on Mathematical Theory of Stability, Nauka, Moskva, 1967. (In Russian.) (1967) MR0226126
  11. R. Engelking, Outline of General Topology, North-Holland Publ. Co., Amsterdam, PWN-Polish Scientific Publishers, 1968. (1968) Zbl0157.53001MR0230273
  12. M. Fukuhara, Sur une généralization d'un théorème de Kneser, Proc. Japan Acad. 29 (1953), 154-155. (1953) MR0060084
  13. L. Górniewicz D. Rozploch-Nowakowska, On the Schauder fixed point theorem, Topology in Nonlinear Analysis. Banach Center Publications, vol. 35, Inst. Math., Polish Academy of Sciences, Warszawa, 1996. (1996) MR1448438
  14. P. R. Halmos, Naive Set Theory, Springer, New York Inc., 1974. (1974) Zbl0287.04001MR0453532
  15. A. Haščák, Fixed point theorems for multivalued mappings, Czechoslovak Math. J. 35 (1985), 533-542. (1985) MR0809039
  16. P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics. Longman Sci and Tech., Burnt Mill, Harlow, 1991. (1991) Zbl0731.35050MR1100011
  17. M. A. Krasnosel'skij A. I. Perov, On the existence of solutions of certain nonlinear operator equations, Dokl. Akad. Nauk SSSR 126 (1959), 15-18. (In Russian.) (1959) MR0106421
  18. M. A. Krasnosel'skij G. M. Vajnikko P. P. Zabrejko, Ja. B. Rutickij V. Ja. Stecenko, Approximate Solutions of Operator Equations, Nauka, Moskva, 1969. (In Russian.) (1969) 
  19. M. A. Krasnosel'skij P. P. Zabrejko, Geometric Methods of Nonlinear Analysis, Nauka, Moskva, 1975. (In Russian.) (1975) 
  20. M. A. Krasnosel'skij E.A. Lifšitc A. V. Sobolev, Positive Linear Systems: Method of Positive Operators, Nauka, Moskva, 1985. (In Russian.) (1985) 
  21. M. A. Krasnosel'skij A. V. Lusnikov, Fixed points with special properties, Dokl. Akad. Nauk 345 (1995), 303-305. (In Russian.) (1995) MR1372832
  22. Z. Kubáček, A generalization of N. Arouszajn's theorem on connectedness of the fixed point set of a compact mapping, Czechoslovak Math. J. 37 (1987), 415 423. (1987) MR0904769
  23. Z. Kubáček, On the structure of fixed point sets of some compact maps in the Fréchet space, Math. Bohem. 118 (1993), 343-358. (1993) MR1251881
  24. C. Kuratowski, Topologie. Vol. II, Pol. Tow. Mat., Warszawa, 1952. (1952) Zbl0049.39704MR0054232
  25. A. Pelczar, Introduction to Theory of Differential Equations. Part 2. Elements of the Qualitative Theory of Differential Equations, PWN. Warszawa 1989. (In Polish.) (1989) 
  26. V. A. Pliss, Nonlocal Problems of Oscillation Theory, Nauka, Moskva, 1904. (In Russian). (1904) 
  27. P. Poláčik I. Tereščák, 10.1007/BF00375672, Arch. Rational Mech. Anal. 116 (1991), 339-361. (1991) MR1132766DOI10.1007/BF00375672
  28. N. Rouche P. Habets M. Laloy, Stability Theory by Liapunov's Direct Method, Springer, New York, 1977. (1977) MR0450715
  29. N. Rouche J. Mawhin, Équations Différentielles Ordinaires, Tome II, Stabilité et Solutions Périodiques, Masson et Cie, Paris. 1973. (1973) MR0481182
  30. B. Rudolf, Existence theorems for nonlinear operator equation L u + N u = f and some properties of the set of its solutions, Math. Slovaca 42 (1992). 55-63. (1992) MR1159491
  31. B. Rudolf, A periodic boundary value problem in Hilbert space, Math. Bohem. 119 (1994), 347-358. (1994) Zbl0815.34059MR1316586
  32. B. Rudolf, Monotone iterative technique and connectedness of solutions, Preprint. To appear. 
  33. B. Rudolf Z. Kubáček, 10.1016/0022-247X(90)90341-C, J. Math. Anal. Appl. 46 (1990), 203-206. (1990) DOI10.1016/0022-247X(90)90341-C
  34. W. Sobieszek P. Kowalski, On the different deffinitions of the lower semicontinuity, upper semicontinuity, upper scmicompacity. closity and continuity of the point-to-set maps, Demonstratio Math. 11 (1978), 1059-1003. (1978) MR0529647
  35. P. Takáč, 10.1016/0362-546X(90)90133-2, Nonlinear Anal. 14 (1990), 35-42. (1990) MR1028245DOI10.1016/0362-546X(90)90133-2
  36. P. Takáč, 10.1016/0022-247X(90)90040-M, J. Math. Anal. Appl. 148 (1990), 223-244. (1990) MR1052057DOI10.1016/0022-247X(90)90040-M
  37. V. Šeda J. J. Nieto M. Gera, 10.1016/0096-3003(92)90019-W, Appl. Math. Comp. 48 (1992). 71-82. (1992) MR1147728DOI10.1016/0096-3003(92)90019-W
  38. V. Šeda Z. Kubáček, On the connectedness of the set of fixed points of a compact operator in the Fréchet space C m ( [ b , ) , R n ) , Czechoslovak Math. J. 42 (1992), 577-588. (1992) MR1182189
  39. V. Šeda, Fredholm mappings and the generalized boundary value problem, Differential Integral Equations 8 (1995), 19-40. (1995) MR1296108
  40. T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer, New York. 1975. (1975) Zbl0304.34051MR0466797
  41. K. Yosida, Functional Analysis, Springer, Berlin, 1980. (1980) Zbl0435.46002MR0617913
  42. E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer, New York Inc., 1986. (1986) Zbl0583.47050MR0816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.