On the Schauder fixed point theorem

Lech Górniewicz; Danuta Rozpłoch-Nowakowska

Banach Center Publications (1996)

  • Volume: 35, Issue: 1, page 207-219
  • ISSN: 0137-6934

Abstract

top
The paper contains a survey of various results concerning the Schauder Fixed Point Theorem for metric spaces both in single-valued and multi-valued cases. A number of open problems is formulated.

How to cite

top

Górniewicz, Lech, and Rozpłoch-Nowakowska, Danuta. "On the Schauder fixed point theorem." Banach Center Publications 35.1 (1996): 207-219. <http://eudml.org/doc/251331>.

@article{Górniewicz1996,
abstract = {The paper contains a survey of various results concerning the Schauder Fixed Point Theorem for metric spaces both in single-valued and multi-valued cases. A number of open problems is formulated.},
author = {Górniewicz, Lech, Rozpłoch-Nowakowska, Danuta},
journal = {Banach Center Publications},
keywords = {absolute retract; set-valued operators; degree; fixed point; multivalued map; Schauder fixed point theorem; compact map; Banach space; metric spaces},
language = {eng},
number = {1},
pages = {207-219},
title = {On the Schauder fixed point theorem},
url = {http://eudml.org/doc/251331},
volume = {35},
year = {1996},
}

TY - JOUR
AU - Górniewicz, Lech
AU - Rozpłoch-Nowakowska, Danuta
TI - On the Schauder fixed point theorem
JO - Banach Center Publications
PY - 1996
VL - 35
IS - 1
SP - 207
EP - 219
AB - The paper contains a survey of various results concerning the Schauder Fixed Point Theorem for metric spaces both in single-valued and multi-valued cases. A number of open problems is formulated.
LA - eng
KW - absolute retract; set-valued operators; degree; fixed point; multivalued map; Schauder fixed point theorem; compact map; Banach space; metric spaces
UR - http://eudml.org/doc/251331
ER -

References

top
  1. [B] K. Borsuk, Theory of Retracts, Monografie Matematyczne PAN, PWN Warszawa 1967. Zbl0153.52905
  2. [CB] C. Bowszyc, Some theorems in the Theory of Fixed Points, (Thesis), University of Warsaw (1969), (in Polish). 
  3. [FB] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. Zbl0176.45204
  4. [D] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag Berlin Heidelberg New York Tokyo 1985. Zbl0559.47040
  5. [DG] J. Dugundji and A. Granas, Fixed Point Theory, Vol. 1, Monografie Matematyczne PAN, PWN Warszawa 1982. Zbl0483.47038
  6. [FG] G. Fournier and L. Górniewicz, The Lefschetz fixed point theorem for some non-compact multi-valued maps, Fundamenta Mathematicae XCIV (1977). Zbl0342.55007
  7. [F1] G. Fournier, Théorème de Lefschetz, I - Applications éventuellement compactes, Bull. Acad. Polon. Sci. 6 (1975), 693-701. Zbl0307.55006
  8. [F2] G. Fournier, Théorème de Lefschetz, II - Applications d'attraction compacte, ibid., 701-706. Zbl0307.55007
  9. [F3] G. Fournier, Théorème de Lefschetz, III - Applications asymptotiquement compactes, ibid., 707-713. 
  10. [LG] L. Górniewicz, Homological methods in fixed point theory of multivalued maps, Dissertationes Math. 129 (1976), Warszawa. 
  11. [AG] A. Granas, Points Fixes pour les Applications Compactes: Espaces de Lefschetz et la Theorie de l'Indice, SMS, Montreal 68 (1980). Zbl0456.55001
  12. [AG1] A. Granas, Generalizing the Hopf-Lefschetz fixed point theorem for non-compact ANR-s, Symposium on Infinite Dimensional Topology, Bâton-Rouge, 1967. 
  13. [S] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180. Zbl56.0355.01
  14. [W] A. Wieczorek, Survey of Results on Kakutani Property of Spaces with generalized Convexity, Fixed Point Theory and its Applications, Pitman Research Notes in Mathematics Series No. 252 (1990), 453-461. Zbl0757.54032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.