The value of additive forms at prime arguments
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 77-91
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCook, Roger J.. "The value of additive forms at prime arguments." Journal de théorie des nombres de Bordeaux 13.1 (2001): 77-91. <http://eudml.org/doc/248690>.
@article{Cook2001,
abstract = {Let $f (\mathbf \{p\})$ be an additive form of degree $k$ with $s$ prime variables $p_1,p_2,\dots , p_s$. Suppose that $f$ has real coefficients $\lambda _i$ with at least one ratio $\lambda _i / \lambda _j$ algebraic and irrational. If s is large enough then $f$ takes values close to almost all members of any well-spaced sequence. This complements earlier work of Brüdern, Cook and Perelli (linear forms) and Cook and Fox (quadratic forms). The result is based on Hua’s Lemma and, for $k \ge 6$, Heath-Brown’s improvement on Hua’s Lemma.},
author = {Cook, Roger J.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {additive forms; Diophantine inequalities; primes},
language = {eng},
number = {1},
pages = {77-91},
publisher = {Université Bordeaux I},
title = {The value of additive forms at prime arguments},
url = {http://eudml.org/doc/248690},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Cook, Roger J.
TI - The value of additive forms at prime arguments
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 77
EP - 91
AB - Let $f (\mathbf {p})$ be an additive form of degree $k$ with $s$ prime variables $p_1,p_2,\dots , p_s$. Suppose that $f$ has real coefficients $\lambda _i$ with at least one ratio $\lambda _i / \lambda _j$ algebraic and irrational. If s is large enough then $f$ takes values close to almost all members of any well-spaced sequence. This complements earlier work of Brüdern, Cook and Perelli (linear forms) and Cook and Fox (quadratic forms). The result is based on Hua’s Lemma and, for $k \ge 6$, Heath-Brown’s improvement on Hua’s Lemma.
LA - eng
KW - additive forms; Diophantine inequalities; primes
UR - http://eudml.org/doc/248690
ER -
References
top- [1] C. Bauer, M.-C. Liu, T. Zhan, Personal Communication.
- [2] J. Brüdern, R.J. Cook, A. Perelli, The values of binary linear forms at prime arguments. Sieve Methods. In Exponential Sums and their Applications in Number Theory, ed. G.R.H. Greaves, G. Harman and M.N. Huxley, Cambridge University Press1996, 87-100. Zbl0924.11085MR1635730
- [3] R.J. Cook, A. Fox, The values of ternary quadratic forms at prime arguments. Mathematika, to appear. Zbl1035.11010MR2220213
- [4] H. Davenport, Indefinite quadratic forms in many variables. Mathematika, 3 (1956), 81-101. Zbl0072.27205MR85303
- [5] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities. Campus Publishers, Ann Arbor, Michigan, 1962. Zbl1089.11500MR159786
- [6] H. Davenport, H. Heilbronn, On indefinite quadratic forms in five variables. J. London Math. Soc.21 (1946), 185-193. Zbl0060.11914MR20578
- [7] H. Davenport, K.F. Roth, The solubility of certain diophantine inequalities. Mathematika, 2 (1955), 81-96. Zbl0066.29301MR75989
- [8] A. Ghosh, The distribution of αp2 modulo 1. Proc. London Math. Soc. (3) 42 (1981), 252—269. Zbl0447.10035
- [9] G. Harman, Trigonometric sums over primes. Mathematika28 (1981), 249-254. Zbl0465.10029MR645105
- [10] G.H. Hardy, J.E. Littlewood, Some problems of "Partitio Numerorum" , V. Proc. London Math. Soc. (2) 22 (1923), 46-56. Zbl49.0127.03JFM49.0127.03
- [11] D.R. Heath-Brown, Weyl's inequality, Hua's inequality and Waring's problem. J. London Math. Soc38 (1988), 216-230. Zbl0619.10046
- [12] L.K. Hua, Some results in the additive prime number theory. Quart. J. Math. Oxford9 (1938), 68-80. Zbl0018.29404JFM64.0131.02
- [13] L.K. Hua, On Waring's problem. Quart. J. Math. Oxford9 (1938), 199-202. Zbl0020.10504JFM64.0124.04
- [14] M.-C. Leung, M.-C. Liu, On generalized quadratic equations in three prime variables. Monatsh. Math.115 (1993), 113-169. Zbl0779.11045MR1223248
- [15] H. Li, The exceptional set of Goldbach numbers. Quart. J. Math Oxford50 (1999), 471-482. Zbl0937.11046MR1726788
- [16] H. Li, The exceptional set of Goldbach numbers II. Preprint. Zbl0963.11057MR1739736
- [17] H.L. Montgomery, R.C. Vaughan, The exceptional set in Goldbach's problem. Acta Arith.27 (1975), 353-370. Zbl0301.10043MR374063
- [18] W. Schwarz, Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen, II. J. Reine Angew. Math.206 (1961), 78-112. Zbl0102.28201MR126431
- [19] R.C. Vaughan, Diophantine approximation by prime numbers I. Proc. London Math. Soc. (3) 28 (1974), 373-384. Zbl0274.10045MR337812
- [20] R.C. Vaughan, Diophantine approximation by prime numbers II. Proc. London Math. Soc. (3) 28 (1974), 385-401. Zbl0276.10031MR337813
- [21] G.L. Watson, On indefinite quadratic forms in five variables. Proc. London Math. Soc. (3) 3 (1953), 170-181. Zbl0050.04704MR57916
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.