A Diophantine inequality with four squares and one k th power of primes

Quanwu Mu; Minhui Zhu; Ping Li

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 2, page 353-363
  • ISSN: 0011-4642

Abstract

top
Let k 5 be an odd integer and η be any given real number. We prove that if λ 1 , λ 2 , λ 3 , λ 4 , μ are nonzero real numbers, not all of the same sign, and λ 1 / λ 2 is irrational, then for any real number σ with 0 < σ < 1 / ( 8 ϑ ( k ) ) , the inequality | λ 1 p 1 2 + λ 2 p 2 2 + λ 3 p 3 2 + λ 4 p 4 2 + μ p 5 k + η | < max 1 j 5 p j - σ has infinitely many solutions in prime variables p 1 , p 2 , , p 5 , where ϑ ( k ) = 3 × 2 ( k - 5 ) / 2 for k = 5 , 7 , 9 and ϑ ( k ) = [ ( k 2 + 2 k + 5 ) / 8 ] for odd integer k with k 11 . This improves a recent result in W. Ge, T. Wang (2018).

How to cite

top

Mu, Quanwu, Zhu, Minhui, and Li, Ping. "A Diophantine inequality with four squares and one $k$th power of primes." Czechoslovak Mathematical Journal 69.2 (2019): 353-363. <http://eudml.org/doc/294523>.

@article{Mu2019,
abstract = {Let $k\ge 5$ be an odd integer and $\eta $ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu $ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma $ with $0<\sigma <1/(8\vartheta (k))$, the inequality \[ |\lambda \_1p\_1^2+\lambda \_2p\_2^2+\lambda \_3p\_3^2+\lambda \_4p\_4^2+\mu p\_5^k+ \eta |<\Bigl (\max \_\{1\le j\le 5\} p\_j\Bigr )^\{-\sigma \} \] has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^\{(k-5)/2\}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\ge 11$. This improves a recent result in W. Ge, T. Wang (2018).},
author = {Mu, Quanwu, Zhu, Minhui, Li, Ping},
journal = {Czechoslovak Mathematical Journal},
keywords = {Diophantine inequalities; Davenport-Heilbronn method; prime},
language = {eng},
number = {2},
pages = {353-363},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Diophantine inequality with four squares and one $k$th power of primes},
url = {http://eudml.org/doc/294523},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Mu, Quanwu
AU - Zhu, Minhui
AU - Li, Ping
TI - A Diophantine inequality with four squares and one $k$th power of primes
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 353
EP - 363
AB - Let $k\ge 5$ be an odd integer and $\eta $ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu $ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma $ with $0<\sigma <1/(8\vartheta (k))$, the inequality \[ |\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+ \eta |<\Bigl (\max _{1\le j\le 5} p_j\Bigr )^{-\sigma } \] has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^{(k-5)/2}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\ge 11$. This improves a recent result in W. Ge, T. Wang (2018).
LA - eng
KW - Diophantine inequalities; Davenport-Heilbronn method; prime
UR - http://eudml.org/doc/294523
ER -

References

top
  1. Baker, A., 10.1515/crll.1967.228.166, J. Reine Angew. Math. 228 (1967), 166-181. (1967) Zbl0155.09202MR0217016DOI10.1515/crll.1967.228.166
  2. Baker, R. C., Harman, G., 10.1112/jlms/s2-25.2.201, J. Lond. Math. Soc., II. Ser. 25 (1982), 201-215. (1982) Zbl0443.10015MR0653378DOI10.1112/jlms/s2-25.2.201
  3. Bourgain, J., 10.1134/S0081543817010035, Proc. Steklov Inst. Math. 296 (2017), 30-40 translated from Tr. Mat. Inst. Steklova 296 2017 36-46. (2017) Zbl1371.11138MR3640771DOI10.1134/S0081543817010035
  4. Cook, R. J., 10.5802/jtnb.305, J. Théor. Nombres Bordx. 13 (2001), 77-91. (2001) Zbl1047.11095MR1838071DOI10.5802/jtnb.305
  5. Davenport, H., Heilbronn, H., 10.1112/jlms/s1-21.3.185, J. Lond. Math. Soc. 21 (1946), 185-193. (1946) Zbl0060.11914MR0020578DOI10.1112/jlms/s1-21.3.185
  6. Ge, W., Wang, T., 10.4064/aa170225-23-10, Acta Arith. 182 (2018), 183-199. (2018) Zbl06857931MR3749367DOI10.4064/aa170225-23-10
  7. Harman, G., 10.1112/S0025579300010305, Mathematika 28 (1981), 249-254. (1981) Zbl0465.10029MR0645105DOI10.1112/S0025579300010305
  8. Harman, G., 10.1112/jlms/s2-44.2.218, J. Lond. Math. Soc., II. Ser. 44 (1991), 218-226. (1991) Zbl0754.11010MR1136436DOI10.1112/jlms/s2-44.2.218
  9. Harman, G., 10.1112/S0025579300015527, Mathematika 51 (2004), 83-96. (2004) Zbl1107.11043MR2220213DOI10.1112/S0025579300015527
  10. Heath-Brown, D. R., 10.1112/jlms/s2-38.2.216, J. Lond. Math. Soc., II. Ser. 38 (1988), 216-230. (1988) Zbl0619.10046MR0966294DOI10.1112/jlms/s2-38.2.216
  11. Hua, L.-K., 10.1093/qmath/os-9.1.68, Q. J. Math., Oxf. Ser. 9 (1938), 68-80. (1938) Zbl0018.29404MR3363459DOI10.1093/qmath/os-9.1.68
  12. Languasco, A., Zaccagnini, A., 10.1016/j.jnt.2012.06.015, J. Number Theory 132 (2012), 3016-3028. (2012) Zbl1306.11032MR2965205DOI10.1016/j.jnt.2012.06.015
  13. Languasco, A., Zaccagnini, A., A Diophantine problem with prime variables, Highly Composite: Papers in Number Theory V. Kumar Murty, R. Thangadurai Ramanujan Mathematical Society Lecture Notes Series 23, Ramanujan Mathematical Society, Mysore (2016), 157-168. (2016) Zbl1382.11006MR3692733
  14. Li, W., Wang, T., Diophantine approximation with four squares and one k -th power of primes, J. Math. Sci. Adv. Appl. 6 (2010), 1-16. (2010) Zbl1238.11047MR2828771
  15. Li, W., Wang, T., Diophantine approximation with two primes and one square of prime, Chin. Q. J. Math. 27 (2012), 417-423. (2012) Zbl1274.11111
  16. Matomäki, K., 10.1017/S0017089509990176, Glasg. Math. J. 52 (2010), 87-106. (2010) Zbl1257.11035MR2587819DOI10.1017/S0017089509990176
  17. Mu, Q., 10.1007/s11139-015-9740-6, Ramanujan J. 39 (2016), 481-496. (2016) Zbl06562458MR3472121DOI10.1007/s11139-015-9740-6
  18. Mu, Q., 10.1142/S1793042117500853, Int. J. Number Theory 13 (2017), 1531-1545. (2017) Zbl06737274MR3656207DOI10.1142/S1793042117500853
  19. Mu, Q., Qu, Y., A Diophantine inequality with prime variables and mixed power, Acta Math. Sin., Chin. Ser. 58 (2015), 491-500 Chinese. (2015) Zbl1340.11055MR3443185
  20. Ramachandra, K., 10.1515/crll.1973.262-263.158, J. Reine Angew. Math. 262/263 (1973), 158-165. (1973) Zbl0266.10017MR0327661DOI10.1515/crll.1973.262-263.158
  21. Vaughan, R. C., 10.1112/plms/s3-28.2.373, Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. (1974) Zbl0274.10045MR0337812DOI10.1112/plms/s3-28.2.373
  22. Vaughan, R. C., 10.1017/CBO9780511470929.001, Cambridge Tracts in Mathematics 125, Cambridge University Press, Cambridge (1997). (1997) Zbl0868.11046MR1435742DOI10.1017/CBO9780511470929.001
  23. Vinogradov, I. M., Representation of an odd number as a sum of three primes, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 15 (1937), 169-172. (1937) Zbl0016.29101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.