Additive properties of dense subsets of sifted sequences

Olivier Ramaré; Imre Z. Ruzsa

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 2, page 559-581
  • ISSN: 1246-7405

Abstract

top
We examine additive properties of dense subsets of sifted sequences, and in particular prove under very general assumptions that such a sequence is an additive asymptotic basis whose order is very well controlled.

How to cite

top

Ramaré, Olivier, and Ruzsa, Imre Z.. "Additive properties of dense subsets of sifted sequences." Journal de théorie des nombres de Bordeaux 13.2 (2001): 559-581. <http://eudml.org/doc/248692>.

@article{Ramaré2001,
abstract = {We examine additive properties of dense subsets of sifted sequences, and in particular prove under very general assumptions that such a sequence is an additive asymptotic basis whose order is very well controlled.},
author = {Ramaré, Olivier, Ruzsa, Imre Z.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {sufficiently sifted sequence; additive asymptotic basis; upper bound; asymmetrical lower bound; Selberg sieve; large sieve},
language = {eng},
number = {2},
pages = {559-581},
publisher = {Université Bordeaux I},
title = {Additive properties of dense subsets of sifted sequences},
url = {http://eudml.org/doc/248692},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Ramaré, Olivier
AU - Ruzsa, Imre Z.
TI - Additive properties of dense subsets of sifted sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 559
EP - 581
AB - We examine additive properties of dense subsets of sifted sequences, and in particular prove under very general assumptions that such a sequence is an additive asymptotic basis whose order is very well controlled.
LA - eng
KW - sufficiently sifted sequence; additive asymptotic basis; upper bound; asymmetrical lower bound; Selberg sieve; large sieve
UR - http://eudml.org/doc/248692
ER -

References

top
  1. [1] M.B. Barban, The "large sieve" method and its application to number theory, (Russian). Uspehi Mat. Nauk21 (1966), 51-102. Zbl0234.10031MR199171
  2. [2] E. BombieriLe grand crible dans la théorie analytique des nombres. Astérisque18 (1987). Zbl0618.10042MR891718
  3. [3] E. Bombieri, H. Davenport, On the large sieve method. Abh. aus Zahlentheorie und Analysis zur Erinnerung an Edmund Landau, Deut. Verlag Wiss., Berlin (1968), 11-22. Zbl0207.05702MR260703
  4. [4] J. Brüdern, A. Perelli, The addition of primes and power Can. J. Math.48 (1996), 512-526. Zbl0860.11061MR1402325
  5. [5] P.X. Gallagher, The large sieve. Mathematika14 (1967), 14-20. Zbl0163.04401MR214562
  6. [6] P.X. Gallagher, Sieving by prime powers. Acta Arith.24 (1974), 491-497. Zbl0276.10026MR337844
  7. [7] G. Greaves, On the representation of a number in the form x2 +y2+p2 +q2 where p and q are primes. Acta Arith.29 (1976), 257-274. Zbl0283.10030MR404182
  8. [8] H. Halberstam, H.E. Richert, Sieves methods. London Mathematical Society Monographs4, Academic Press, London-New York, 1974. Zbl0298.10026MR424730
  9. [9] H. Halberstam, K.F. Roth, Sequences, Second edition. Springer-Verlag, New York-Berlin, 1983. Zbl0498.10001MR687978
  10. [10] K.H. Indlekofer, Scharfe Abschätchung für die Anzahlfunction der B-Zwillinge. Acta Arith.26 (1974/75), 207-212. Zbl0268.10032MR354586
  11. [11] H. IwaniecPrimes of the type ϕ(x, y) + A where ϕ is a quadratic form. Acta Arith.21 (1972), 203-234. Zbl0215.35603
  12. [12] Y.V. Linnik, The large sieve. C. R. (Doklady) Acad. Sci. URSS (N.S.) 30(1941), 292-294. Zbl0024.29302MR4266JFM67.0128.01
  13. [13] J.E. Van Lint, H.E. Richert, On primes in arithmetic progressionsActa Arith.11 (1965), 209-216. Zbl0133.29901MR188174
  14. [14] H.L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Math.227, Springer-Verlag, Berlin-New York, 1971. Zbl0216.03501MR337847
  15. [15] Y. Motohashi, Lectures on sieve methods and prime number theory. Tata Institute of Fundamental Research Lectures on Mathematics and Physics72, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1983. Zbl0535.10001MR735437
  16. [16] O. Ramaré, On Snirel'man's constant. Ann. Scu. Norm. Pisa21 (1995), 645-706. Zbl0851.11057MR1375315
  17. [17] N.P. Romanoff, Über einige Sätze der additiven Zahlentheorie. Math. Ann.109 (1934), 668-678. Zbl0009.00801MR1512916JFM60.0131.03
  18. [18] I.Z. Ruzsa, On an additive property of squares and primes. Acta Arith.49 (1988), 281-289. Zbl0636.10042MR932527
  19. [19] I.Z. Ruzsa, Essential Components. Proc. London Math. Soc.34 (1987), 38-56. Zbl0609.10042MR872249
  20. [20] A. Sárközy, On finite addition theorems. Astérisque258 (1999), 109-127. Zbl0969.11003MR1701190
  21. [21] L.G. Schnirelman, Über additive Eigenschaften von Zahlen. Math. Annalen107 (1933), 649-690. Zbl0006.10402MR1512821JFM59.0198.01
  22. [22] A. Selberg, Remarks on multiplicative functions. Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976), 232-241, Lecture Notes in Math.626, Springer, Berlin, 1977. Zbl0367.10041MR485750

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.