Additive properties of dense subsets of sifted sequences
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 2, page 559-581
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRamaré, Olivier, and Ruzsa, Imre Z.. "Additive properties of dense subsets of sifted sequences." Journal de théorie des nombres de Bordeaux 13.2 (2001): 559-581. <http://eudml.org/doc/248692>.
@article{Ramaré2001,
abstract = {We examine additive properties of dense subsets of sifted sequences, and in particular prove under very general assumptions that such a sequence is an additive asymptotic basis whose order is very well controlled.},
author = {Ramaré, Olivier, Ruzsa, Imre Z.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {sufficiently sifted sequence; additive asymptotic basis; upper bound; asymmetrical lower bound; Selberg sieve; large sieve},
language = {eng},
number = {2},
pages = {559-581},
publisher = {Université Bordeaux I},
title = {Additive properties of dense subsets of sifted sequences},
url = {http://eudml.org/doc/248692},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Ramaré, Olivier
AU - Ruzsa, Imre Z.
TI - Additive properties of dense subsets of sifted sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 559
EP - 581
AB - We examine additive properties of dense subsets of sifted sequences, and in particular prove under very general assumptions that such a sequence is an additive asymptotic basis whose order is very well controlled.
LA - eng
KW - sufficiently sifted sequence; additive asymptotic basis; upper bound; asymmetrical lower bound; Selberg sieve; large sieve
UR - http://eudml.org/doc/248692
ER -
References
top- [1] M.B. Barban, The "large sieve" method and its application to number theory, (Russian). Uspehi Mat. Nauk21 (1966), 51-102. Zbl0234.10031MR199171
- [2] E. BombieriLe grand crible dans la théorie analytique des nombres. Astérisque18 (1987). Zbl0618.10042MR891718
- [3] E. Bombieri, H. Davenport, On the large sieve method. Abh. aus Zahlentheorie und Analysis zur Erinnerung an Edmund Landau, Deut. Verlag Wiss., Berlin (1968), 11-22. Zbl0207.05702MR260703
- [4] J. Brüdern, A. Perelli, The addition of primes and power Can. J. Math.48 (1996), 512-526. Zbl0860.11061MR1402325
- [5] P.X. Gallagher, The large sieve. Mathematika14 (1967), 14-20. Zbl0163.04401MR214562
- [6] P.X. Gallagher, Sieving by prime powers. Acta Arith.24 (1974), 491-497. Zbl0276.10026MR337844
- [7] G. Greaves, On the representation of a number in the form x2 +y2+p2 +q2 where p and q are primes. Acta Arith.29 (1976), 257-274. Zbl0283.10030MR404182
- [8] H. Halberstam, H.E. Richert, Sieves methods. London Mathematical Society Monographs4, Academic Press, London-New York, 1974. Zbl0298.10026MR424730
- [9] H. Halberstam, K.F. Roth, Sequences, Second edition. Springer-Verlag, New York-Berlin, 1983. Zbl0498.10001MR687978
- [10] K.H. Indlekofer, Scharfe Abschätchung für die Anzahlfunction der B-Zwillinge. Acta Arith.26 (1974/75), 207-212. Zbl0268.10032MR354586
- [11] H. IwaniecPrimes of the type ϕ(x, y) + A where ϕ is a quadratic form. Acta Arith.21 (1972), 203-234. Zbl0215.35603
- [12] Y.V. Linnik, The large sieve. C. R. (Doklady) Acad. Sci. URSS (N.S.) 30(1941), 292-294. Zbl0024.29302MR4266JFM67.0128.01
- [13] J.E. Van Lint, H.E. Richert, On primes in arithmetic progressionsActa Arith.11 (1965), 209-216. Zbl0133.29901MR188174
- [14] H.L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Math.227, Springer-Verlag, Berlin-New York, 1971. Zbl0216.03501MR337847
- [15] Y. Motohashi, Lectures on sieve methods and prime number theory. Tata Institute of Fundamental Research Lectures on Mathematics and Physics72, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1983. Zbl0535.10001MR735437
- [16] O. Ramaré, On Snirel'man's constant. Ann. Scu. Norm. Pisa21 (1995), 645-706. Zbl0851.11057MR1375315
- [17] N.P. Romanoff, Über einige Sätze der additiven Zahlentheorie. Math. Ann.109 (1934), 668-678. Zbl0009.00801MR1512916JFM60.0131.03
- [18] I.Z. Ruzsa, On an additive property of squares and primes. Acta Arith.49 (1988), 281-289. Zbl0636.10042MR932527
- [19] I.Z. Ruzsa, Essential Components. Proc. London Math. Soc.34 (1987), 38-56. Zbl0609.10042MR872249
- [20] A. Sárközy, On finite addition theorems. Astérisque258 (1999), 109-127. Zbl0969.11003MR1701190
- [21] L.G. Schnirelman, Über additive Eigenschaften von Zahlen. Math. Annalen107 (1933), 649-690. Zbl0006.10402MR1512821JFM59.0198.01
- [22] A. Selberg, Remarks on multiplicative functions. Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976), 232-241, Lecture Notes in Math.626, Springer, Berlin, 1977. Zbl0367.10041MR485750
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.