Restriction theory of the Selberg sieve, with applications
Ben Green[1]; Terence Tao[2]
- [1] School of Mathematics University of Bristol Bristol BS8 1TW, England
- [2] Department of Mathematics University of California at Los Angeles Los Angeles CA 90095, USA
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 1, page 147-182
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGreen, Ben, and Tao, Terence. "Restriction theory of the Selberg sieve, with applications." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 147-182. <http://eudml.org/doc/249661>.
@article{Green2006,
abstract = {The Selberg sieve provides majorants for certain arithmetic sequences, such as the primes and the twin primes. We prove an $L^2$–$L^p$ restriction theorem for majorants of this type. An immediate application is to the estimation of exponential sums over prime $k$-tuples. Let $a_1,\dots ,a_k$ and $b_1,\dots ,b_k$ be positive integers. Write $h(\theta ) := \sum _\{n \in X\} e(n\theta )$, where $X$ is the set of all $n \le N$ such that the numbers $a_1n + b_1,\dots , a_kn + b_k$ are all prime. We obtain upper bounds for $\Vert h \Vert _\{L^p(\mathbb\{T\})\}$, $p > 2$, which are (conditionally on the Hardy-Littlewood prime tuple conjecture) of the correct order of magnitude. As a second application we deduce from Chen’s theorem, Roth’s theorem, and a transference principle that there are infinitely many arithmetic progressions $p_1 < p_2 < p_3$ of primes, such that $p_i + 2$ is either a prime or a product of two primes for each $i=1,2,3$.},
affiliation = {School of Mathematics University of Bristol Bristol BS8 1TW, England; Department of Mathematics University of California at Los Angeles Los Angeles CA 90095, USA},
author = {Green, Ben, Tao, Terence},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {primes; arithmetic progressions; Selberg sieve},
language = {eng},
number = {1},
pages = {147-182},
publisher = {Université Bordeaux 1},
title = {Restriction theory of the Selberg sieve, with applications},
url = {http://eudml.org/doc/249661},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Green, Ben
AU - Tao, Terence
TI - Restriction theory of the Selberg sieve, with applications
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 147
EP - 182
AB - The Selberg sieve provides majorants for certain arithmetic sequences, such as the primes and the twin primes. We prove an $L^2$–$L^p$ restriction theorem for majorants of this type. An immediate application is to the estimation of exponential sums over prime $k$-tuples. Let $a_1,\dots ,a_k$ and $b_1,\dots ,b_k$ be positive integers. Write $h(\theta ) := \sum _{n \in X} e(n\theta )$, where $X$ is the set of all $n \le N$ such that the numbers $a_1n + b_1,\dots , a_kn + b_k$ are all prime. We obtain upper bounds for $\Vert h \Vert _{L^p(\mathbb{T})}$, $p > 2$, which are (conditionally on the Hardy-Littlewood prime tuple conjecture) of the correct order of magnitude. As a second application we deduce from Chen’s theorem, Roth’s theorem, and a transference principle that there are infinitely many arithmetic progressions $p_1 < p_2 < p_3$ of primes, such that $p_i + 2$ is either a prime or a product of two primes for each $i=1,2,3$.
LA - eng
KW - primes; arithmetic progressions; Selberg sieve
UR - http://eudml.org/doc/249661
ER -
References
top- G.F. Bachelis, On the upper and lower majorant properties in . Quart. J. Math. (Oxford) (2) 24 (1973), 119–128. Zbl0268.43003MR320636
- A. Balog, The Hardy-Littlewood -tuple conjecture on average. Analytic Number Theory (eds. B. Brendt, H.G. Diamond, H. Halberstam and A. Hildebrand), Birkhäuser, 1990, 47–75. Zbl0719.11066
- J. Bourgain, On -subsets of squares. Israel J. Math. 67 (1989), 291–311. Zbl0692.43005MR1029904
- —, Fourier restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. GAFA 3 (1993), 107–156. Zbl0787.35097
- —, On triples in arithmetic progression. GAFA 9 (1999), no. 5, 968–984. Zbl0959.11004
- J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes. Sci. Sinica 16 (1973), 157–176. Zbl0319.10056MR434997
- F. Dress, H. Iwaniec, G. Tenenbaum, Sur une somme liée à la fonction Möbius. J. reine angew. Math. 340 (1983), 53–58. Zbl0497.10003MR691960
- J.B. Friedlander, D.A. Goldston, Variance of distribution of primes in residue classes. Quart. J. Math. (Oxford) (2) 47 (1996), 313–336. Zbl0859.11054MR1412558
- J.B. Friedlander, H. Iwaniec, The polynomial captures its primes. Ann. Math. 148 (1998), no. 3, 965–1040. Zbl0926.11068
- D.A. Goldston, A lower bound for the second moment of primes in short intervals. Exposition Math. 13 (1995), no. 4, 366–376. Zbl0854.11044MR1358214
- D.A. Goldston, C.Y. Yıldırım, Higher correlations of divisor sums related to primes, I: Triple correlations. Integers 3 (2003) A5, 66pp. Zbl1118.11039
- D.A. Goldston, C.Y. Yıldırım, Higher correlations of divisor sums related to primes, III: -correlations. Preprint. Available at: http://www.arxiv.org/pdf/math.NT/0209102. Zbl1134.11034
- D.A. Goldston, C.Y. Yıldırım, Small gaps between primes I. Preprint. Available at: http://www.arxiv.org/pdf/math.NT/0504336. Zbl1134.11034
- W.T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four. GAFA 8 (1998), 529–551. Zbl0907.11005MR1631259
- S.W. Graham, An asymptotic estimate related to Selberg’s sieve. J. Num. Th. 10 (1978), 83–94. Zbl0382.10031MR484449
- B.J. Green, Roth’s theorem in the primes. Ann. of Math. (2) 161 (2005), no. 3, 1609–1636. Zbl1160.11307MR2180408
- B.J. Green, I.Z. Ruzsa, On the Hardy-Littlewood majorant problem. Math. Proc. Camb. Phil. Soc. 137 (2004), no. 3, 511–517. Zbl1066.42009MR2103913
- B.J. Green, T.C. Tao, The primes contain arbitrarily long arithmetic progressions. To appear in Ann. of Math. Zbl1191.11025
- H. Halberstam, H.E. Richert, Sieve Methods. London Math. Soc. Monographs 4, Academic Press 1974. Zbl0298.10026MR424730
- C. Hooley, Applications of sieve methods in number theory. Cambridge Tracts in Math. 70, CUP 1976. Zbl0327.10044
- C. Hooley, On the Barban-Davenport-Halberstam theorem, XII. Number Theory in Progress, Vol. 2 (Zakopan–Kościelisko 1997), 893–910, de Gruyter, Berlin 1999. Zbl0943.11042MR1689551
- H. Iwaniec, Sieve methods. Graduate course, Rutgers 1996.
- G. Mockenhaupt, W. Schlag, manuscript.
- H.L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis. CBMS Regional Conference Series in Mathematics 84, AMS, Providence, RI, 1994. Zbl0814.11001MR1297543
- H.L. Montgomery, Selberg’s work on the zeta-function. In Number Theory, Trace Formulas and Discrete Groups (a Symposium in Honor of Atle Selberg, Oslo, Norway, July 14–21, 1987). Zbl0671.10001
- Y. Motohashi, A multiple sum involving the Möbius function. Publ. Inst. Math. (Beograd) (N.S.) 76(90) (2004), 31–39. Also available at: http://www.arxiv.org/pdf/math.NT/0310064. Zbl1098.11049MR2123862
- O. Ramaré, On Snirel’man’s constant. Ann. Scu. Norm. Pisa 22 (1995), 645–706. Zbl0851.11057MR1375315
- O. Ramaré, I.Z. Ruzsa, Additive properties of dense subsets of sifted sequences. J. Th. Nombres de Bordeaux 13 (2001), 559–581. Zbl0996.11057MR1879673
- K.F. Roth, On certain sets of integers. J. London Math. Soc. 28 (1953), 104–109. Zbl0050.04002MR51853
- I.Z. Ruzsa, On an additive property of squares and primes. Acta Arithmetica 49 (1988), 281–289. Zbl0636.10042MR932527
- A. Selberg, On an elementary method in the theory of primes. Kong. Norske Vid. Selsk. Forh. B 19 (18), 64–67. Zbl0041.01903MR22871
- T.C. Tao, Recent progress on the restriction conjecture. In Fourier analysis and convexity (Milan, 2001), 217–243, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2004. Zbl1083.42008
- D.I. Tolev, Arithmetic progressions of prime-almost-prime twins. Acta. Arith. 88 (1999), no. 1, 67–98. Zbl0929.11043MR1698353
- P. Tomas, A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 81 (1975), 477–478. Zbl0298.42011MR358216
- P. Varnavides, On certain sets of positive density. J. London Math. Soc. 34 (1959), 358–360. Zbl0088.25702MR106865
- R. Vaughan, The Hardy-Littlewood method, 2nd ed. Cambridge Tracts in Math. 125, CUP 1997. Zbl0868.11046MR1435742
- D.R. Ward, Some series involving Euler’s function. J. London Math. Soc. 2 (1927), 210–214. Zbl53.0164.01
- A. Zygmund, Trigonometric series, 2nd ed. Vols I, II. CUP 1959. Zbl58.0296.09MR107776
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.