Restriction theory of the Selberg sieve, with applications

Ben Green[1]; Terence Tao[2]

  • [1] School of Mathematics University of Bristol Bristol BS8 1TW, England
  • [2] Department of Mathematics University of California at Los Angeles Los Angeles CA 90095, USA

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 1, page 147-182
  • ISSN: 1246-7405

Abstract

top
The Selberg sieve provides majorants for certain arithmetic sequences, such as the primes and the twin primes. We prove an L 2 L p restriction theorem for majorants of this type. An immediate application is to the estimation of exponential sums over prime k -tuples. Let a 1 , , a k and b 1 , , b k be positive integers. Write h ( θ ) : = n X e ( n θ ) , where X is the set of all n N such that the numbers a 1 n + b 1 , , a k n + b k are all prime. We obtain upper bounds for h L p ( 𝕋 ) , p > 2 , which are (conditionally on the Hardy-Littlewood prime tuple conjecture) of the correct order of magnitude. As a second application we deduce from Chen’s theorem, Roth’s theorem, and a transference principle that there are infinitely many arithmetic progressions p 1 < p 2 < p 3 of primes, such that p i + 2 is either a prime or a product of two primes for each i = 1 , 2 , 3 .

How to cite

top

Green, Ben, and Tao, Terence. "Restriction theory of the Selberg sieve, with applications." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 147-182. <http://eudml.org/doc/249661>.

@article{Green2006,
abstract = {The Selberg sieve provides majorants for certain arithmetic sequences, such as the primes and the twin primes. We prove an $L^2$–$L^p$ restriction theorem for majorants of this type. An immediate application is to the estimation of exponential sums over prime $k$-tuples. Let $a_1,\dots ,a_k$ and $b_1,\dots ,b_k$ be positive integers. Write $h(\theta ) := \sum _\{n \in X\} e(n\theta )$, where $X$ is the set of all $n \le N$ such that the numbers $a_1n + b_1,\dots , a_kn + b_k$ are all prime. We obtain upper bounds for $\Vert h \Vert _\{L^p(\mathbb\{T\})\}$, $p &gt; 2$, which are (conditionally on the Hardy-Littlewood prime tuple conjecture) of the correct order of magnitude. As a second application we deduce from Chen’s theorem, Roth’s theorem, and a transference principle that there are infinitely many arithmetic progressions $p_1 &lt; p_2 &lt; p_3$ of primes, such that $p_i + 2$ is either a prime or a product of two primes for each $i=1,2,3$.},
affiliation = {School of Mathematics University of Bristol Bristol BS8 1TW, England; Department of Mathematics University of California at Los Angeles Los Angeles CA 90095, USA},
author = {Green, Ben, Tao, Terence},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {primes; arithmetic progressions; Selberg sieve},
language = {eng},
number = {1},
pages = {147-182},
publisher = {Université Bordeaux 1},
title = {Restriction theory of the Selberg sieve, with applications},
url = {http://eudml.org/doc/249661},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Green, Ben
AU - Tao, Terence
TI - Restriction theory of the Selberg sieve, with applications
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 147
EP - 182
AB - The Selberg sieve provides majorants for certain arithmetic sequences, such as the primes and the twin primes. We prove an $L^2$–$L^p$ restriction theorem for majorants of this type. An immediate application is to the estimation of exponential sums over prime $k$-tuples. Let $a_1,\dots ,a_k$ and $b_1,\dots ,b_k$ be positive integers. Write $h(\theta ) := \sum _{n \in X} e(n\theta )$, where $X$ is the set of all $n \le N$ such that the numbers $a_1n + b_1,\dots , a_kn + b_k$ are all prime. We obtain upper bounds for $\Vert h \Vert _{L^p(\mathbb{T})}$, $p &gt; 2$, which are (conditionally on the Hardy-Littlewood prime tuple conjecture) of the correct order of magnitude. As a second application we deduce from Chen’s theorem, Roth’s theorem, and a transference principle that there are infinitely many arithmetic progressions $p_1 &lt; p_2 &lt; p_3$ of primes, such that $p_i + 2$ is either a prime or a product of two primes for each $i=1,2,3$.
LA - eng
KW - primes; arithmetic progressions; Selberg sieve
UR - http://eudml.org/doc/249661
ER -

References

top
  1. G.F. Bachelis, On the upper and lower majorant properties in L p ( G ) . Quart. J. Math. (Oxford) (2) 24 (1973), 119–128. Zbl0268.43003MR320636
  2. A. Balog, The Hardy-Littlewood k -tuple conjecture on average. Analytic Number Theory (eds. B. Brendt, H.G. Diamond, H. Halberstam and A. Hildebrand), Birkhäuser, 1990, 47–75. Zbl0719.11066
  3. J. Bourgain, On Λ ( p ) -subsets of squares. Israel J. Math. 67 (1989), 291–311. Zbl0692.43005MR1029904
  4. —, Fourier restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. GAFA 3 (1993), 107–156. Zbl0787.35097
  5. —, On triples in arithmetic progression. GAFA 9 (1999), no. 5, 968–984. Zbl0959.11004
  6. J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes. Sci. Sinica 16 (1973), 157–176. Zbl0319.10056MR434997
  7. F. Dress, H. Iwaniec, G. Tenenbaum, Sur une somme liée à la fonction Möbius. J. reine angew. Math. 340 (1983), 53–58. Zbl0497.10003MR691960
  8. J.B. Friedlander, D.A. Goldston, Variance of distribution of primes in residue classes. Quart. J. Math. (Oxford) (2) 47 (1996), 313–336. Zbl0859.11054MR1412558
  9. J.B. Friedlander, H. Iwaniec, The polynomial X 2 + Y 4 captures its primes. Ann. Math. 148 (1998), no. 3, 965–1040. Zbl0926.11068
  10. D.A. Goldston, A lower bound for the second moment of primes in short intervals. Exposition Math. 13 (1995), no. 4, 366–376. Zbl0854.11044MR1358214
  11. D.A. Goldston, C.Y. Yıldırım, Higher correlations of divisor sums related to primes, I: Triple correlations. Integers 3 (2003) A5, 66pp. Zbl1118.11039
  12. D.A. Goldston, C.Y. Yıldırım, Higher correlations of divisor sums related to primes, III: k -correlations. Preprint. Available at: http://www.arxiv.org/pdf/math.NT/0209102. Zbl1134.11034
  13. D.A. Goldston, C.Y. Yıldırım, Small gaps between primes I. Preprint. Available at: http://www.arxiv.org/pdf/math.NT/0504336. Zbl1134.11034
  14. W.T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four. GAFA 8 (1998), 529–551. Zbl0907.11005MR1631259
  15. S.W. Graham, An asymptotic estimate related to Selberg’s sieve. J. Num. Th. 10 (1978), 83–94. Zbl0382.10031MR484449
  16. B.J. Green, Roth’s theorem in the primes. Ann. of Math. (2) 161 (2005), no. 3, 1609–1636. Zbl1160.11307MR2180408
  17. B.J. Green, I.Z. Ruzsa, On the Hardy-Littlewood majorant problem. Math. Proc. Camb. Phil. Soc. 137 (2004), no. 3, 511–517. Zbl1066.42009MR2103913
  18. B.J. Green, T.C. Tao, The primes contain arbitrarily long arithmetic progressions. To appear in Ann. of Math. Zbl1191.11025
  19. H. Halberstam, H.E. Richert, Sieve Methods. London Math. Soc. Monographs 4, Academic Press 1974. Zbl0298.10026MR424730
  20. C. Hooley, Applications of sieve methods in number theory. Cambridge Tracts in Math. 70, CUP 1976. Zbl0327.10044
  21. C. Hooley, On the Barban-Davenport-Halberstam theorem, XII. Number Theory in Progress, Vol. 2 (Zakopan–Kościelisko 1997), 893–910, de Gruyter, Berlin 1999. Zbl0943.11042MR1689551
  22. H. Iwaniec, Sieve methods. Graduate course, Rutgers 1996. 
  23. G. Mockenhaupt, W. Schlag, manuscript. 
  24. H.L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis. CBMS Regional Conference Series in Mathematics 84, AMS, Providence, RI, 1994. Zbl0814.11001MR1297543
  25. H.L. Montgomery, Selberg’s work on the zeta-function. In Number Theory, Trace Formulas and Discrete Groups (a Symposium in Honor of Atle Selberg, Oslo, Norway, July 14–21, 1987). Zbl0671.10001
  26. Y. Motohashi, A multiple sum involving the Möbius function. Publ. Inst. Math. (Beograd) (N.S.) 76(90) (2004), 31–39. Also available at: http://www.arxiv.org/pdf/math.NT/0310064. Zbl1098.11049MR2123862
  27. O. Ramaré, On Snirel’man’s constant. Ann. Scu. Norm. Pisa 22 (1995), 645–706. Zbl0851.11057MR1375315
  28. O. Ramaré, I.Z. Ruzsa, Additive properties of dense subsets of sifted sequences. J. Th. Nombres de Bordeaux 13 (2001), 559–581. Zbl0996.11057MR1879673
  29. K.F. Roth, On certain sets of integers. J. London Math. Soc. 28 (1953), 104–109. Zbl0050.04002MR51853
  30. I.Z. Ruzsa, On an additive property of squares and primes. Acta Arithmetica 49 (1988), 281–289. Zbl0636.10042MR932527
  31. A. Selberg, On an elementary method in the theory of primes. Kong. Norske Vid. Selsk. Forh. B 19 (18), 64–67. Zbl0041.01903MR22871
  32. T.C. Tao, Recent progress on the restriction conjecture. In Fourier analysis and convexity (Milan, 2001), 217–243, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2004. Zbl1083.42008
  33. D.I. Tolev, Arithmetic progressions of prime-almost-prime twins. Acta. Arith. 88 (1999), no. 1, 67–98. Zbl0929.11043MR1698353
  34. P. Tomas, A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 81 (1975), 477–478. Zbl0298.42011MR358216
  35. P. Varnavides, On certain sets of positive density. J. London Math. Soc. 34 (1959), 358–360. Zbl0088.25702MR106865
  36. R. Vaughan, The Hardy-Littlewood method, 2nd ed. Cambridge Tracts in Math. 125, CUP 1997. Zbl0868.11046MR1435742
  37. D.R. Ward, Some series involving Euler’s function. J. London Math. Soc. 2 (1927), 210–214. Zbl53.0164.01
  38. A. Zygmund, Trigonometric series, 2nd ed. Vols I, II. CUP 1959. Zbl58.0296.09MR107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.