On šnirel'man's constant

Olivier Ramaré

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 4, page 645-706
  • ISSN: 0391-173X

How to cite

top

Ramaré, Olivier. "On šnirel'man's constant." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.4 (1995): 645-706. <http://eudml.org/doc/84218>.

@article{Ramaré1995,
author = {Ramaré, Olivier},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Goldbach problem; sum of primes; representation of integers; Schnirel'man constant; sum sets},
language = {eng},
number = {4},
pages = {645-706},
publisher = {Scuola normale superiore},
title = {On šnirel'man's constant},
url = {http://eudml.org/doc/84218},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Ramaré, Olivier
TI - On šnirel'man's constant
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 4
SP - 645
EP - 706
LA - eng
KW - Goldbach problem; sum of primes; representation of integers; Schnirel'man constant; sum sets
UR - http://eudml.org/doc/84218
ER -

References

top
  1. [1] J. Chen - T. Wang, On the odd Goldbach problem, Acta Math. Sinica32 (1989), 702-718. Zbl0695.10041MR1046491
  2. [2] A. Granville - J. Van De Lune - H.J.J. Te Riele, "Checking the Golbach conjecture on a vector computer". Collection: Number theory and applications (Banff, Alberta, 1988), 423-433. Nato Adv. Sci. Inst. Ser. C Math. Phys. Sci. 265 ed. R.A. Mollin Publ. Kluwer Acad. Publ., Dordrecht (1989). Zbl0679.10002MR1123087
  3. [3] H. Halberstam - H.-E. Richert, Sieves methods, Academic Press, London, 1974. 
  4. [4] H. Halberstam - K.F. Roth, Sequences, Clarendon Press, Oxford (1966). Zbl0141.04405MR210679
  5. [5] C. Hooley, Applications of sieves methods to the theory of numbers, Cambridge University Press70, Cambridge, 1976. Zbl0327.10044MR404173
  6. [6] Yu. V. Linnik, The Dispersion Method in Binary Additive Problems, Translations of Mathematical Monographs 4, Amer. Math. Soc., Providence RI, 1963. Zbl0112.27402MR168543
  7. [7] H. Montgomery - R.C. Vaughan, The large sieve, Mathematika20 (1973), 119-133. Zbl0296.10023MR374060
  8. [8] E. Preissmann, Sur une inégalité de Montgomery et Vaughan, Enseign. Math.30 (1984), 95-113. Zbl0548.10031MR743672
  9. [9] O. Ramaré, Short effective intervals containing primes, submitted to J. Number Theory. Zbl1032.11038
  10. [10] O. Ramaré - R. Rumely, Primes in arithmetic progressions, Math. Comp. (to appear). Zbl0856.11042MR1320898
  11. [11] H. Riesel - R.C. Vaughan, On sums of primes, Ark. Mat.21 (1983), 45-74. Zbl0516.10044MR706639
  12. [12] J.B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math.63 (1941), 211-232. Zbl0024.25004MR3018JFM67.0129.03
  13. [13] J.B. Rosser - L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math.6 (1962), 64-94. Zbl0122.05001MR137689
  14. [14] J.B. Rosser - L. Schoenfeld, Sharper bounds for the Chebyshev functions ψ and θ. I, Math. Comp.29 (1975), 243-269. Zbl0295.10036
  15. [15] R. Rumely, Numerical Computations Concerning the ERH, Math. Comp.61 (1993), 415-440. Zbl0792.11034MR1195435
  16. [16] I.Z. Ruzsa, An additive property of squares and primes, Acta Arith.49 (1987), 281-289. Zbl0636.10042MR932527
  17. [17] H.N. Shapiro - J. Warga, On the representation of large integers as sums of primes, Comm. Pure Appl. Math.3 (1950), 153-176. Zbl0038.18602MR37323
  18. [18] L. Schoenfeld, Sharper bounds for the Chebyshev functions ψ and θ. II, Math. Comp.30 (1976), 337-360. Zbl0326.10037
  19. [19] R.C. Vaughan, A note on Šnirel'man's approach to Goldbach's problem, Bull. London Math. Soc.8 (1976), 245-250. Zbl0336.10046MR424736
  20. [20] R.C. Vaughan, On the estimation of Schnirelman's constant, J. Reine Angew. Math.290 (1977), 93-108. Zbl0344.10028MR437478

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.