On linear normal lattices configurations
Mordechay B. Levin[1]; Meir Smorodinsky[2]
- [1] Department of Mathematics Bar-Ilan University 52900, Ramat-Gan, Israel
- [2] School of Mathematical Sciences Tel Aviv University 69978, Tel-Aviv, Israel
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 825-858
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLevin, Mordechay B., and Smorodinsky, Meir. "On linear normal lattices configurations." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 825-858. <http://eudml.org/doc/249467>.
@article{Levin2005,
abstract = {In this paper we extend Champernowne’s construction of normal numbers in base $b$ to the $\mathbb\{Z\}^d$ case and obtain an explicit construction of the generic point of the $\mathbb\{Z\}^d$ shift transformation of the set $\lbrace 0,1,...,b-1 \rbrace ^\{\mathbb\{Z\}^d\}$. We prove that the intersection of the considered lattice configuration with an arbitrary line is a normal sequence in base $b$ .},
affiliation = {Department of Mathematics Bar-Ilan University 52900, Ramat-Gan, Israel; School of Mathematical Sciences Tel Aviv University 69978, Tel-Aviv, Israel},
author = {Levin, Mordechay B., Smorodinsky, Meir},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {normal lattice configurations; normal numbers},
language = {eng},
number = {3},
pages = {825-858},
publisher = {Université Bordeaux 1},
title = {On linear normal lattices configurations},
url = {http://eudml.org/doc/249467},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Levin, Mordechay B.
AU - Smorodinsky, Meir
TI - On linear normal lattices configurations
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 825
EP - 858
AB - In this paper we extend Champernowne’s construction of normal numbers in base $b$ to the $\mathbb{Z}^d$ case and obtain an explicit construction of the generic point of the $\mathbb{Z}^d$ shift transformation of the set $\lbrace 0,1,...,b-1 \rbrace ^{\mathbb{Z}^d}$. We prove that the intersection of the considered lattice configuration with an arbitrary line is a normal sequence in base $b$ .
LA - eng
KW - normal lattice configurations; normal numbers
UR - http://eudml.org/doc/249467
ER -
References
top- R. Adler, M. Keane, M. Smorodinsky, A construction of a normal number for the continued fraction transformation. Journal of Number Theory 13 (1981), 95–105. Zbl0448.10050MR602450
- D. J. Champernowne, The construction of decimals normal in the scale of ten. J. London Math. Soc. 8 (1933), 254–260. Zbl0007.33701
- J. Cigler, Asymptotische Verteilung reeller Zahlen mod 1. Monatsh. Math. 64 (1960), 201–225. Zbl0111.25301MR121358
- M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Math, vol. 1651, Springer, 1997. Zbl0877.11043MR1470456
- T. Kamae, Subsequences of normal sequences. Israel J. Math. 16 (1973), 121–149. Zbl0272.28012MR338321
- N. M. Korobov, Exponential Sums and their Applications. Kluwer Academic Publishers, Dordrecht, 1992. Zbl0754.11022MR1162539
- L. Kuipers , H. Niederreiter, Uniform Distribution of Sequences. Pure and Applied Mathematics, Wiley–Interscience, New York, 1974. Zbl0281.10001MR419394
- P. Kirschenhofer, R.F. Tichy, On uniform distribution of double sequences. Manuscripta Math. 35 (1981), 195–207. Zbl0478.10036MR627933
- M. B. Levin, On normal lattice configurations and simultaneously normal numbers. J. Théor. Nombres Bordeaux 13 (2001), 483–527. Zbl0999.11039MR1879670
- M. B. Levin, Discrepancy estimate of completely uniform distributed double sequences. In preparation.
- M. B. Levin, M. Smorodinsky, A generalisation of the Davenport–Erdös construction of normal numbers. Colloq. Math. 84/85 (2000), 431–441. Zbl1014.11046MR1784206
- M. B. Levin, M. Smorodinsky, Explicit construction of normal lattice configurations. Colloq. Math. 102 (2005), 33–47. Zbl1080.11057MR2150267
- M. B. Levin, M. Smorodinsky, On polynomial normal lattice configurations. Monatsh. Math. (2005) Zbl1126.11037MR2216557
- A. G. Postnikov, Arithmetic modeling of random processes. Proc. Steklov. Inst. Math. 57 (1960), 84 pp. Zbl0106.12101MR148639
- M. Smorodinsky, B. Weiss, Normal sequences for Markov shifts and intrinsically ergodic subshifts. Israel J. Math. 59 (1987), 225–233. Zbl0643.10041MR920084
- B. Weiss, Normal sequences as collectives. Proc. Symp. on Topological Dynamics and Ergodic Theory, Univ. of Kentucky, 1971.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.