Metaplectic covers of and the Gauss-Schering lemma
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 189-199
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C.F. Gauss, Zur Theorie der biquadratischen Reste. Werke, Band 2, 313-385.
- [2] W. Habicht, Ein elementarer Beweis des kubischen Reziprozitatsgesetzes. Math. Annalen139 (1959-60), 343-365. Zbl0104.26501MR113867
- [3] R. Hill, A geometric proof of a reciprocity law. Nagoya Math. Journ.137 (1995), 77-144. Zbl0824.11067MR1324545
- [4] R. Hill, Space forms and Higher Metaplectic Groups. Math. Annalen.310 (1998), 735-775. Zbl0908.11056MR1619756
- [5] D. Kazhdan, S.J. Patterson, 'Metaplectic forms. Publ. Math. I.H.E.S.59 (1984), 35-142 + Corrigendum Ibid62 (1985), 419. Zbl0559.10026MR743816
- [6] J. Klose, Kommutatoren und 2-Cohomologie p-adischer Quaternionenschiefkörper. Math. Zeit.191 (1986), 261-282. Zbl0576.12018MR818671
- [7] T. Kubota, Topological covering of SL(2) over a local field. J. Math. Soc. Japan19 (1967), 114-121. Zbl0166.29603MR204422
- [8] T. Kubota, On Automorphic Functions and the Reciprocity Law in a Number field. Lecture notes vol. 2, Kyoto Univ., 1969. Zbl0231.10017MR255490
- [9] T. Kubota, Geometry of numbers and class field theory. Japan J. Math.13 (1987), 235-275. Zbl0639.12004MR921585
- [10] T. Kubota, Foundations of Class Field Theory through properties of space figures, (in Japanese). Sugaka44 (1992), 1-12. Zbl0760.11034
- [11] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. scient. Ec. Norm. Sup. (4) 2 (1969), 1-62. Zbl0261.20025MR240214
- [12] J. Milnor, Introduction to Algebraic K-Theory. Annals of Mathematics Studies72 (1971). Zbl0237.18005MR349811
- [13] E. Schering, Verallgemeinerung des Gaußischen Criterium für den quadratischen Restcharakter einer Zahl in Bezug auf eine andere. Werke Band I, 285-286. JFM08.0093.04