The Lehmer constants of an annulus

Artūras Dubickas; Chris J. Smyth

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 2, page 413-420
  • ISSN: 1246-7405

Abstract

top
Let M ( α ) be the Mahler measure of an algebraic number α , and V be an open subset of . Then its Lehmer constant L ( V ) is inf M ( α ) 1 / deg ( α ) , the infimum being over all non-zero non-cyclotomic α lying with its conjugates outside V . We evaluate L ( V ) when V is any annulus centered at 0 . We do the same for a variant of L ( V ) , which we call the transfinite Lehmer constant L ( V ) .Also, we prove the converse to Langevin’s Theorem, which states that L ( V ) > 1 if V contains a point of modulus 1 . We prove the corresponding result for L ( V ) .

How to cite

top

Dubickas, Artūras, and Smyth, Chris J.. "The Lehmer constants of an annulus." Journal de théorie des nombres de Bordeaux 13.2 (2001): 413-420. <http://eudml.org/doc/248715>.

@article{Dubickas2001,
abstract = {Let $M (\alpha )$ be the Mahler measure of an algebraic number $\alpha $, and $V$ be an open subset of $\mathbb \{C\}$. Then its Lehmer constant$L (V)$ is inf $M (\alpha )^\{1/ \deg (\alpha )\}$, the infimum being over all non-zero non-cyclotomic $\alpha $ lying with its conjugates outside $V$. We evaluate $L(V)$ when $V$ is any annulus centered at $0$. We do the same for a variant of $L (V)$, which we call the transfinite Lehmer constant $L_\infty (V)$.Also, we prove the converse to Langevin’s Theorem, which states that $L (V) &gt; 1$ if $V$ contains a point of modulus $1$. We prove the corresponding result for $L_\infty (V)$.},
author = {Dubickas, Artūras, Smyth, Chris J.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Lehmer constant; Mahler measure; polynomial zeros},
language = {eng},
number = {2},
pages = {413-420},
publisher = {Université Bordeaux I},
title = {The Lehmer constants of an annulus},
url = {http://eudml.org/doc/248715},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Dubickas, Artūras
AU - Smyth, Chris J.
TI - The Lehmer constants of an annulus
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 413
EP - 420
AB - Let $M (\alpha )$ be the Mahler measure of an algebraic number $\alpha $, and $V$ be an open subset of $\mathbb {C}$. Then its Lehmer constant$L (V)$ is inf $M (\alpha )^{1/ \deg (\alpha )}$, the infimum being over all non-zero non-cyclotomic $\alpha $ lying with its conjugates outside $V$. We evaluate $L(V)$ when $V$ is any annulus centered at $0$. We do the same for a variant of $L (V)$, which we call the transfinite Lehmer constant $L_\infty (V)$.Also, we prove the converse to Langevin’s Theorem, which states that $L (V) &gt; 1$ if $V$ contains a point of modulus $1$. We prove the corresponding result for $L_\infty (V)$.
LA - eng
KW - Lehmer constant; Mahler measure; polynomial zeros
UR - http://eudml.org/doc/248715
ER -

References

top
  1. [BS] F. Beukers, C.J. Smyth, Cyclotomic points on curves. Number Theory for the Millennium: Proc. Millennial Conf. Number Theory (B. C. Berndt et al., eds.), Urbana, Illinois, May 21 - 26, 2000, A K Peters, Ltd., Natick, MA (to appear 2002). Zbl1029.11009MR1956219
  2. [D] A. Dubickas, On the distribution of roots of polynomials in sectors. I. Liet. Matem. Rink.38 (1998), 34-58. Zbl0920.12001MR1663816
  3. [DS] A. Dubickas, C.J. Smyth, On the Remak height, the Mahler measure, and conjugate sets of algebraic numbers lying on two circles. Proc. Edinburgh Math. Soc.44 (2001), 1-17. Zbl0997.11087MR1878724
  4. [La] M. Langevin, Méthode de Fekete - Szegö et problème de Lehmer. C. R. Acad. Sci. Paris Sér. I Math.301 (1985), 463-466. Zbl0585.12013MR812558
  5. [La2] M. Langevin, Minorations de la maison et de la mesure de Mahler de certains entiers algébriques. C. R. Acad. Sci. Paris Sèr. I Math.303 (1986), 523-526. Zbl0604.12001MR867930
  6. [La3] M. Langevin, Calculs explicites de constantes de Lehmer. Groupe de travail en théorie analytique et élémentaire des nombres, 1986-1987, 52-68, Publ. Math. Orsay, 88-01, Univ. Paris XI, Orsay, 1988. Zbl0678.12002MR950948
  7. [Le1] D.H. Lehmer, Factorisation of certain cyclotomic functions. Ann. of Math. (2) 34 (1933), 461-479. Zbl0007.19904MR1503118JFM59.0933.03
  8. [Le2] D.H. Lehmer, Review of [La3]. Math. Rev.89j:11025. 
  9. [M] M. Mignotte, Sur un théorème de M. Langevin. Acta Arith.54 (1989), 81-86. Zbl0641.12003MR1024420
  10. [RS] G. Rhin, C.J. Smyth, On the absolute Mahler measure of polynomials having all zeros in a sector. Math. Comp.65 (1995), 295-304. Zbl0820.11064MR1257579
  11. [Sc] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number. Acta Arith.24 (1973), 385-399; Addendum 26 (1975), 329-331. Zbl0275.12004MR360515
  12. [Sm] C.J. Smyth, On the measure of totally real algebraic integers. J. Austral. Math. Soc. Ser. A30 (1980), 137-149. Zbl0457.12001MR607924

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.