Displaying similar documents to “The Lehmer constants of an annulus”

Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation

Innocent Ndikubwayo (2020)

Czechoslovak Mathematical Journal

Similarity:

This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence { P i } i = 1 generated by a three-term recurrence relation P i ( x ) + Q 1 ( x ) P i - 1 ( x ) + Q 2 ( x ) P i - 2 ( x ) = 0 with the standard initial conditions P 0 ( x ) = 1 , P - 1 ( x ) = 0 , where Q 1 ( x ) and Q 2 ( x ) are arbitrary real polynomials.

Inequalities concerning polar derivative of polynomials

Arty Ahuja, K. K. Dewan, Sunil Hans (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper we obtain certain results for the polar derivative of a polynomial p ( z ) = c n z n + j = μ n c n - j z n - j , 1 μ n , having all its zeros on | z | = k , k 1 , which generalizes the results due to Dewan and Mir, Dewan and Hans. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros. [Editor’s note: There are flaws in the paper, see M. A. Qazi, Remarks on some recent results about polynomials with restricted zeros, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (2), (2013),...

A note on the number of zeros of polynomials in an annulus

Xiangdong Yang, Caifeng Yi, Jin Tu (2011)

Annales Polonici Mathematici

Similarity:

Let p(z) be a polynomial of the form p ( z ) = j = 0 n a j z j , a j - 1 , 1 . We discuss a sufficient condition for the existence of zeros of p(z) in an annulus z ∈ ℂ: 1 - c < |z| < 1 + c, where c > 0 is an absolute constant. This condition is a combination of Carleman’s formula and Jensen’s formula, which is a new approach in the study of zeros of polynomials.

Zeros of solutions of certain higher order linear differential equations

Hong-Yan Xu, Cai-Feng Yi (2010)

Annales Polonici Mathematici

Similarity:

We investigate the exponent of convergence of the zero-sequence of solutions of the differential equation f ( k ) + a k - 1 ( z ) f ( k - 1 ) + + a ( z ) f ' + D ( z ) f = 0 , (1) where D ( z ) = Q ( z ) e P ( z ) + Q ( z ) e P ( z ) + Q ( z ) e P ( z ) , P₁(z),P₂(z),P₃(z) are polynomials of degree n ≥ 1, Q₁(z),Q₂(z),Q₃(z), a j ( z ) (j=1,..., k-1) are entire functions of order less than n, and k ≥ 2.

On the Győry-Sárközy-Stewart conjecture in function fields

Igor E. Shparlinski (2018)

Czechoslovak Mathematical Journal

Similarity:

We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product ( a b + 1 ) ( a c + 1 ) ( b c + 1 ) for distinct positive integers a , b and c . In particular, we show that, under some natural conditions on rational functions F , G , H ( X ) , the number of distinct zeros and poles of the shifted products F H + 1 and G H + 1 grows linearly with deg H if deg H max { deg F , deg G } . We also obtain a version of this result for rational functions over a finite field.

Uniqueness results for differential polynomials sharing a set

Soniya Sultana, Pulak Sahoo (2025)

Mathematica Bohemica

Similarity:

We investigate the uniqueness results of meromorphic functions if differential polynomials of the form ( Q ( f ) ) ( k ) and ( Q ( g ) ) ( k ) share a set counting multiplicities or ignoring multiplicities, where Q is a polynomial of one variable. We give suitable conditions on the degree of Q and on the number of zeros and the multiplicities of the zeros of Q ' . The results of the paper generalize some results due to T. T. H. An and N. V. Phuong (2017) and that of N. V. Phuong (2021).

Heights of squares of Littlewood polynomials and infinite series

Artūras Dubickas (2012)

Annales Polonici Mathematici

Similarity:

Let P be a unimodular polynomial of degree d-1. Then the height H(P²) of its square is at least √(d/2) and the product L(P²)H(P²), where L denotes the length of a polynomial, is at least d². We show that for any ε > 0 and any d ≥ d(ε) there exists a polynomial P with ±1 coefficients of degree d-1 such that H(P²) < (2+ε)√(dlogd) and L(P²)H(P²)< (16/3+ε)d²log d. A similar result is obtained for the series with ±1 coefficients. Let A m be the mth coefficient of the square f(x)² of...

On a problem of Sidon for polynomials over finite fields

Wentang Kuo, Shuntaro Yamagishi (2016)

Acta Arithmetica

Similarity:

Let ω be a sequence of positive integers. Given a positive integer n, we define rₙ(ω) = |(a,b) ∈ ℕ × ℕ : a,b ∈ ω, a+b = n, 0 < a < b|. S. Sidon conjectured that there exists a sequence ω such that rₙ(ω) > 0 for all n sufficiently large and, for all ϵ > 0, l i m n r ( ω ) / n ϵ = 0 . P. Erdős proved this conjecture by showing the existence of a sequence ω of positive integers such that log n ≪ rₙ(ω) ≪ log n. In this paper, we prove an analogue of this conjecture in q [ T ] , where q is a finite field of...

On the proof of Erdős' inequality

Lai-Yi Zhu, Da-Peng Zhou (2017)

Czechoslovak Mathematical Journal

Similarity:

Using undergraduate calculus, we give a direct elementary proof of a sharp Markov-type inequality p ' [ - 1 , 1 ] 1 2 p [ - 1 , 1 ] for a constrained polynomial p of degree at most n , initially claimed by P. Erdős, which is different from the one in the paper of T. Erdélyi (2015). Whereafter, we give the situations on which the equality holds. On the basis of this inequality, we study the monotone polynomial which has only real zeros all but one outside of the interval ( - 1 , 1 ) and establish a new asymptotically sharp inequality. ...

An a b c d theorem over function fields and applications

Pietro Corvaja, Umberto Zannier (2011)

Bulletin de la Société Mathématique de France

Similarity:

We provide a lower bound for the number of distinct zeros of a sum 1 + u + v for two rational functions u , v , in term of the degree of u , v , which is sharp whenever u , v have few distinct zeros and poles compared to their degree. This sharpens the “ a b c d -theorem” of Brownawell-Masser and Voloch in some cases which are sufficient to obtain new finiteness results on diophantine equations over function fields. For instance, we show that the Fermat-type surface x a + y a + z c = 1 contains only finitely many rational or elliptic...

Zero points of quadratic matrix polynomials

Opfer, Gerhard, Janovská, Drahoslava

Similarity:

Our aim is to classify and compute zeros of the quadratic two sided matrix polynomials, i.e. quadratic polynomials whose matrix coefficients are located at both sides of the powers of the matrix variable. We suppose that there are no multiple terms of the same degree in the polynomial 𝐩 , i.e., the terms have the form 𝐀 j 𝐗 j 𝐁 j , where all quantities 𝐗 , 𝐀 j , 𝐁 j , j = 0 , 1 , ... , N , are square matrices of the same size. Both for classification and computation, the essential tool is the description of the polynomial 𝐩 by a matrix...

Linear maps preserving elements annihilated by the polynomial X Y - Y X

Jianlian Cui, Jinchuan Hou (2006)

Studia Mathematica

Similarity:

Let H and K be complex complete indefinite inner product spaces, and ℬ(H,K) (ℬ(H) if K = H) the set of all bounded linear operators from H into K. For every T ∈ ℬ(H,K), denote by T the indefinite conjugate of T. Suppose that Φ: ℬ(H) → ℬ(K) is a bijective linear map. We prove that Φ satisfies Φ ( A ) Φ ( B ) = Φ ( B ) Φ ( A ) for all A, B ∈ ℬ(H) with A B = B A if and only if there exist a nonzero real number c and a generalized indefinite unitary operator U ∈ ℬ(H,K) such that Φ ( A ) = c U A U for all A ∈ ℬ(H).

Inequalities for Taylor series involving the divisor function

Horst Alzer, Man Kam Kwong (2022)

Czechoslovak Mathematical Journal

Similarity:

Let T ( q ) = k = 1 d ( k ) q k , | q | < 1 , where d ( k ) denotes the number of positive divisors of the natural number k . We present monotonicity properties of functions defined in terms of T . More specifically, we prove that H ( q ) = T ( q ) - log ( 1 - q ) log ( q ) is strictly increasing on ( 0 , 1 ) , while F ( q ) = 1 - q q H ( q ) is strictly decreasing on ( 0 , 1 ) . These results are then applied to obtain various inequalities, one of which states that the double inequality α q 1 - q + log ( 1 - q ) log ( q ) < T ( q ) < β q 1 - q + log ( 1 - q ) log ( q ) , 0 < q < 1 , holds with the best possible constant factors α = γ and β = 1 . Here, γ denotes Euler’s constant. This refines a result of Salem, who...

A quantitative aspect of non-unique factorizations: the Narkiewicz constants III

Weidong Gao, Jiangtao Peng, Qinghai Zhong (2013)

Acta Arithmetica

Similarity:

Let K be an algebraic number field with non-trivial class group G and K be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let F k ( x ) denote the number of non-zero principal ideals a K with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that F k ( x ) behaves for x → ∞ asymptotically like x ( l o g x ) 1 - 1 / | G | ( l o g l o g x ) k ( G ) . We prove, among other results, that ( C n C n ) = n + n for all integers n₁,n₂ with 1 < n₁|n₂.

Equilibrium states for interval maps: the potential - t log | D f |

Henk Bruin, Mike Todd (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let f : I I be a C 2 multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential φ t : x - t log | D f ( x ) | for t close to 1 , and also that the pressure function t P ( φ t ) is analytic on an appropriate interval near t = 1 .

Polynomial relations amongst algebraic units of low measure

John Garza (2014)

Acta Arithmetica

Similarity:

For an algebraic number field and a subset α 1 , . . . , α r , we establish a lower bound for the average of the logarithmic heights that depends on the ideal of polynomials in [ x 1 , . . . , x r ] vanishing at the point ( α 1 , . . . , α r ) .

On the distribution of the roots of polynomial z k - z k - 1 - - z - 1

Carlos A. Gómez, Florian Luca (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the polynomial f k ( z ) = z k - z k - 1 - - z - 1 for k 2 which arises as the characteristic polynomial of the k -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of f k ( z ) which lie inside the unit disk.

Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials

Didier D&amp;#039;Acunto, Krzysztof Kurdyka (2005)

Annales Polonici Mathematici

Similarity:

Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that | f | C | f | ϱ in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than 1 - R ( n , d ) - 1 with R ( n , d ) = d ( 3 d - 3 ) n - 1 .

On sum-product representations in q

Mei-Chu Chang (2006)

Journal of the European Mathematical Society

Similarity:

The purpose of this paper is to investigate efficient representations of the residue classes modulo q , by performing sum and product set operations starting from a given subset A of q . We consider the case of very small sets A and composite q for which not much seemed known (nontrivial results were recently obtained when q is prime or when log | A | log q ). Roughly speaking we show that all residue classes are obtained from a k -fold sum of an r -fold product set of A , where r log q and log k log q , provided the...

Zeros of a certain class of Gauss hypergeometric polynomials

Addisalem Abathun, Rikard Bøgvad (2018)

Czechoslovak Mathematical Journal

Similarity:

We prove that as n , the zeros of the polynomial 2 F 1 - n , α n + 1 α n + 2 ; z cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter α and partially proves a conjecture made by the authors in an earlier work.