Sur la constante de Hida des courbes modulaires et des courbes de Shimura

Emmanuel Ullmo

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 1, page 325-337
  • ISSN: 1246-7405

Abstract

top
We compare the “modules of congruences between modular forms” of quotients of the new part of the jacobian J 0 ( N ) of X 0 ( N ) and quotients of the new part of the jacobian of some Shimura curves which are associated in the correspondance of Shimizu and Jacquet-Langlands.

How to cite

top

Ullmo, Emmanuel. "Sur la constante de Hida des courbes modulaires et des courbes de Shimura." Journal de théorie des nombres de Bordeaux 13.1 (2001): 325-337. <http://eudml.org/doc/248717>.

@article{Ullmo2001,
abstract = {La correspondance de Shimizu et Jacquet-Langlands donne des relations entre les quotients de la partie nouvelle de la jacobienne $J_0(N)$ de $X_0(N)$ et ceux de la partie nouvelle de la jacobienne de certaines courbes de Shimura associées. Nous comparons dans ce texte les congruences entre formes modulaires pour des quotients qui sont associés dans cette correspondance.},
author = {Ullmo, Emmanuel},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Shimura curves; modular curves; modular forms; Jacobians},
language = {fre},
number = {1},
pages = {325-337},
publisher = {Université Bordeaux I},
title = {Sur la constante de Hida des courbes modulaires et des courbes de Shimura},
url = {http://eudml.org/doc/248717},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Ullmo, Emmanuel
TI - Sur la constante de Hida des courbes modulaires et des courbes de Shimura
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 325
EP - 337
AB - La correspondance de Shimizu et Jacquet-Langlands donne des relations entre les quotients de la partie nouvelle de la jacobienne $J_0(N)$ de $X_0(N)$ et ceux de la partie nouvelle de la jacobienne de certaines courbes de Shimura associées. Nous comparons dans ce texte les congruences entre formes modulaires pour des quotients qui sont associés dans cette correspondance.
LA - fre
KW - Shimura curves; modular curves; modular forms; Jacobians
UR - http://eudml.org/doc/248717
ER -

References

top
  1. [1] S. Bosch, W. Lutkebohmert, M. Raynaud, Néron models. Springer-VerlagNew York, 1990. Zbl0705.14001MR1045822
  2. [2] M. Bertolini, H. Darmon, Heegner points on Mumford-Tate curves. Invent. Math126 (1996),no. 3, 413-456. Zbl0882.11034MR1419003
  3. [3] K. Buzzard, Integral models of certain Shimura curves. Duke. Math. Journ.87 (1997), 591-612. Zbl0880.11048MR1446619
  4. [4] B. Gross, Heights and the Special values of L-series. Canadian Math. Soc. Conf. Proc.7 (1997), 115-187. Zbl0623.10019MR894322
  5. [5] A. Grothendieck, Groupe de Monodromie en Géométrie Algébrique. SGA 7 I, Lecture notes in Math. 288, Springer Verlag, 1972. Zbl0237.00013
  6. [6] B. Jordan, R. Livne, On the Néron Model of Jacobian of Shimura Curves. Compositio Math.60 (1986), 227-236 Zbl0609.14018MR868139
  7. [7] H. Hida, Congruences for cusps forms and special values of their zeta functions. Invent. Math63 (1981), 225-261. Zbl0459.10018MR610538
  8. [8] H. Hida, On congruence divisors of cusp forms as factors of the special values of their zeta functions. Invent. Math64 (1981), 225-261. Zbl0472.10028MR629471
  9. [9] B. Mazur, Modular Curves and the Eisenstein Ideal. Pub. Math. IHES47 (1977), 33-186. Zbl0394.14008MR488287
  10. [10] B. Mazur, Rational isogenies of prime degree. Invent. Math44 (1978), 129-162. Zbl0386.14009MR482230
  11. [11] M. Raynaud, Hauteurs et isogénies. Astérisque127 (1985), 199-234. MR801923
  12. [12] M. Raynaud, Jacobienne des courbes modulaires. Astérisque196-197 (1991), 9-25. Zbl0781.14020MR1141454
  13. [13] K. Ribet, On modular representations of rm Gal(Q/Q) arising from modular forms. Invent. Math.100 (1990), 431-471. Zbl0773.11039MR1047143
  14. [14] K. Ribet, Congruence relation between modular forms. Proc. Int. Congr. Math. (1983), 503-514. Zbl0575.10024MR804706
  15. [15] K. Ribet, Mod p Hecke operators and congruences between modular forms. Invent. Math. (1983), 193-205. Zbl0508.10018MR688264
  16. [16] K. Ribet, S. Takahashi, Parametrisation of elliptic curves by Shimura curves and by classical modular curves. Proc. Natl. Acad. Sci. USA94 (1997), 11110-11114. Zbl0897.11018MR1491967
  17. [17] E. Ullmo, Hauteur de Faltings de quotients de J0(N), discriminants d'algèbres de Hecke et congruences entre formes modulaires. Amer. J. of Math.122 (2000), 83-115. Zbl0991.11033MR1737258
  18. [18] M.-F. Vignéras, Arithmétique des algèbres de quaternions. Lect. Notes. Maths800, Springer-VerlagNew-York, 1980. Zbl0422.12008MR580949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.