On sums of Hecke series in short intervals
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 2, page 453-468
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topIvić, Aleksandar. "On sums of Hecke series in short intervals." Journal de théorie des nombres de Bordeaux 13.2 (2001): 453-468. <http://eudml.org/doc/248725>.
@article{Ivić2001,
abstract = {We have $\sum _\{K-G \le k_\{j\} \le K + G\} \alpha _j H^3_j (\frac\{1\}\{2\}) \ll _\epsilon GK^\{1 + \epsilon \}$ for $K^\epsilon \le G \le K, \text\{ where \} \alpha _j = \left|\rho _j (1) \right|^2 (\cosh \pi k_j)^\{-1\}, \text\{ and \} \rho _j (1)$ is the first Fourier coefficient of the Maass wave form corresponding to the eigenvalue $\lambda _j = k^2_j + \frac\{1\}\{4\}$ to which the Hecke series $H_j(s)$ is attached. This result yields the new bound $H_j (\frac\{1\}\{2\} \ll _\{\epsilon \} k^\{\frac\{1\}\{3\} + \epsilon \}_j.$},
author = {Ivić, Aleksandar},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {cubic moment; short interval; Hecke series; Maass wave forms; upper bound},
language = {eng},
number = {2},
pages = {453-468},
publisher = {Université Bordeaux I},
title = {On sums of Hecke series in short intervals},
url = {http://eudml.org/doc/248725},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Ivić, Aleksandar
TI - On sums of Hecke series in short intervals
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 453
EP - 468
AB - We have $\sum _{K-G \le k_{j} \le K + G} \alpha _j H^3_j (\frac{1}{2}) \ll _\epsilon GK^{1 + \epsilon }$ for $K^\epsilon \le G \le K, \text{ where } \alpha _j = \left|\rho _j (1) \right|^2 (\cosh \pi k_j)^{-1}, \text{ and } \rho _j (1)$ is the first Fourier coefficient of the Maass wave form corresponding to the eigenvalue $\lambda _j = k^2_j + \frac{1}{4}$ to which the Hecke series $H_j(s)$ is attached. This result yields the new bound $H_j (\frac{1}{2} \ll _{\epsilon } k^{\frac{1}{3} + \epsilon }_j.$
LA - eng
KW - cubic moment; short interval; Hecke series; Maass wave forms; upper bound
UR - http://eudml.org/doc/248725
ER -
References
top- [1] J.B. Conrey, H. Iwaniec, The cubic moment of central values of automorphic L-functions. Ann. of Math. (2) 151 (2000), 1175-1216. Zbl0973.11056MR1779567
- [2] S.W. Graham, G. Kolesnik, Van der Corput's Method of Exponential Sums. LMS Lecture Note Series126, Cambridge University Press, Cambridge, 1991. Zbl0713.11001MR1145488
- [3] M.N. Huxley, Area, Lattice Points, and Exponential Sums. London Math. Soc. Monographs13, Oxford University Press, Oxford, 1996. Zbl0861.11002MR1420620
- [4] A. Ivic, The Riemann zeta-function. John Wiley and Sons, New York, 1985. Zbl0556.10026MR792089
- [5] A. Ivic, Y. Motohashi, On some estimates involving the binary additive divisor problem. Quart. J. Math. (Oxford) 46 (1995), 471-483. Zbl0847.11046MR1366618
- [6] H. Iwaniec, Small eigenvalues of Laplacian for Γ0 (N). Acta Arith.56 (1990), 65-82. Zbl0702.11034
- [7] H. Iwaniec, The spectral growth of automorphic L-functions. J. Reine Angew. Math.428 (1992), 139-159. Zbl0746.11024MR1166510
- [8] S. Katok, P. Sarnak, Heegner points, cycles and Maass forms. Israel J. Math.84 (1993), 193-227. Zbl0787.11016MR1244668
- [9] N.N. Lebedev, Special functions and their applications. Dover Publications, Inc., New York, 1972. Zbl0271.33001MR350075
- [10] W. Luo, Spectral mean-values of automorphic L-functions at special points. Analytic Number Theory: Proc. of a Conference in Honor of H. Halberstam, Vol. 2 (eds. B. C. Berndt et al.), Birkhauser, Boston etc., 1996, 621-632. Zbl0866.11034MR1409382
- [11] Y. Motohashi, Spectral mean values of Maass wave forms. J. Number Theory42 (1992), 258-284. Zbl0759.11026MR1189505
- [12] Y. Motohashi, The binary additive divisor problem. Ann. Sci. l'École Norm. Sup.4e série 27 (1994), 529-572. Zbl0819.11038MR1296556
- [13] Y. Motohashi, Spectral theory of the Riemann zeta-function. Cambridge University Press, Cambridge, 1997. Zbl0878.11001MR1489236
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.