# On convergence of quadrature-differences method for linear singular integro-differential equations on the interval

Archivum Mathematicum (2001)

- Volume: 037, Issue: 4, page 257-271
- ISSN: 0044-8753

## Access Full Article

top## Abstract

top## How to cite

topFedotov, A. I.. "On convergence of quadrature-differences method for linear singular integro-differential equations on the interval." Archivum Mathematicum 037.4 (2001): 257-271. <http://eudml.org/doc/248744>.

@article{Fedotov2001,

abstract = {Here we propose and justify the quadrature-differences method for the full linear singular integro-differential equations with Cauchy kernel on the interval $(-1,1)$. We consider equations of zero, positive and negative indices. It is shown, that the method converges to exact solution and the error estimate depends on the sharpness of derivative approximation and the smoothness of the coefficients and the right-hand side of the equation.},

author = {Fedotov, A. I.},

journal = {Archivum Mathematicum},

keywords = {singular integro-differential equations; quadrature-differences method; singular integro-differential equations; quadrature-differences method},

language = {eng},

number = {4},

pages = {257-271},

publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},

title = {On convergence of quadrature-differences method for linear singular integro-differential equations on the interval},

url = {http://eudml.org/doc/248744},

volume = {037},

year = {2001},

}

TY - JOUR

AU - Fedotov, A. I.

TI - On convergence of quadrature-differences method for linear singular integro-differential equations on the interval

JO - Archivum Mathematicum

PY - 2001

PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno

VL - 037

IS - 4

SP - 257

EP - 271

AB - Here we propose and justify the quadrature-differences method for the full linear singular integro-differential equations with Cauchy kernel on the interval $(-1,1)$. We consider equations of zero, positive and negative indices. It is shown, that the method converges to exact solution and the error estimate depends on the sharpness of derivative approximation and the smoothness of the coefficients and the right-hand side of the equation.

LA - eng

KW - singular integro-differential equations; quadrature-differences method; singular integro-differential equations; quadrature-differences method

UR - http://eudml.org/doc/248744

ER -

## References

top- Afendikova N. G., Lifanov I. K., Matveev A. F., Approximate solution of singular integral equations, Differ. Uravn. 23 (1987), N8, 1392–1402 (in Russian). (1987) Zbl0645.65092MR0909586
- Belotserkovski S. M., Lifanov I. K., Numerical methods for singular integral equations, Moscow 1985 (in Russian). (1985)
- Elliott D., The approximate solution of singular integral equations, Solution Methods for Integral Equations, Theory and Applications, Math. Concepts Meth. Sci. Eng., New York-London 18 1979, 83–107. (1979) Zbl0446.65062MR0564265
- Fedotov A. I., On convergence of quadrature-differences method for linear singular integrodifferential equations, Zh. Vychisl. Mat. Mat. Fiz. 29 (1989), N9, 1301–1307 (in Russian). (1989) MR1018581
- Fedotov A. I., On convergence of quadrature-differences method for one class of singular integro-differential equations, Izv. Vyssh. Uchebn. Zaved. Mat. (1989), N8, 64–68 (in Russian). (1989) MR1039732
- Fedotov A. I., On convergence of quadrature-differences method for nonlinear singular integrodifferential equations, Zh. Vychisl. Mat. Mat. Fiz. 31 (1991), N5, 781–787 (in Russian). (1991) MR1120019
- Fedotov A. I., On convergence of quadrature-differences method for linear singular integrodifferential equations with discontinuous coefficients, Zh. Vychisl. Mat. Mat. Fiz. 31 (1991), N2, 261–271 (in Russian). (1991) MR1099589
- Gakhov F. D., Boundary Value Problems, Pergamon Press, Oxford, England 1966. (1966) Zbl0141.08001MR0198152
- Hvedelidze B. V., Linear discontinuous boundary problems of the theory of functions and some their applications, Proceedings of Tbilisi Mathematical Institute of Georgian Academy of Sciences 23 (1956), 3–158 (in Russian). (1956) MR0107148
- Ivanov V. V., The theory of approximate methods and their application to the numerical solution of singular integral equations, Noordhoff, Holland 1976. (1976) Zbl0346.65065MR0405045
- Kantorovič L. V., Akilov G. P., Functional analysis in normed spaces, Macmillan, New York 1964. (1964) MR0213845
- Karpenko L. N., Approximate solution of a singular integral equations by means of Jacobi polynomials, J. Appl. Math. Mech. 30 (1966), 668–675. (1966) MR0231156
- Lifanov I. K., The method of singular integral equations and a numerical experiment in mathematical physics, aerodynamics and the theory of elasticity and wave diffraction, Moscow 1995 (in Russian). (1995) Zbl0904.73001MR1461016
- Matveev A. F.,, On the construction of approximate solutions of singular integral equations of the second kind, Doklady Akad. Nauk 307 (1989), N5, 1046–1050 (in Russian). (1989) MR1020685
- Muskhelishvili N. I., Singular integral equations, Noordhoff, Groningen, Holland 1953. (1953) Zbl0051.33203MR0355494
- Natanson I. G., Construction theory of functions, Moscow 1959 (in Russian). (1959)
- Szegö G., Orthogonal Polynomials, AMS Colloquim Publications, 23, 1967. (1967) MR0310533
- Vainikko G. M., The compact approximation of the operators and the approximate solution of the equations, Tartu University Press, Tartu 1970 (in Russian). (1970) MR0273475

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.