Some equalities for generalized inverses of matrix sums and block circulant matrices
Archivum Mathematicum (2001)
- Volume: 037, Issue: 4, page 301-306
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topTian, Yong Ge. "Some equalities for generalized inverses of matrix sums and block circulant matrices." Archivum Mathematicum 037.4 (2001): 301-306. <http://eudml.org/doc/248752>.
@article{Tian2001,
abstract = {Let $ A_1, A_2,\cdots , A_n $ be complex matrices of the same size. We show in this note that the Moore-Penrose inverse, the Drazin inverse and the weighted Moore-Penrose inverse of the sum $ \sum _\{t=1\}^\{n\} A_t$ can all be determined by the block circulant matrix generated by $ A_1, A_2, \cdots , A_n$. In addition, some equalities are also presented for the Moore-Penrose inverse and the Drazin inverse of a quaternionic matrix.},
author = {Tian, Yong Ge},
journal = {Archivum Mathematicum},
keywords = {block circulant matrix; Moore-Penrose inverse; Drazin inverse; weighted Moore-Penrose inverse; quaternionic matrix; block circulant matrix; Moore-Penrose inverse; Drazin inverse; weighted Moore-Penrose inverse; quaternionic matrix},
language = {eng},
number = {4},
pages = {301-306},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some equalities for generalized inverses of matrix sums and block circulant matrices},
url = {http://eudml.org/doc/248752},
volume = {037},
year = {2001},
}
TY - JOUR
AU - Tian, Yong Ge
TI - Some equalities for generalized inverses of matrix sums and block circulant matrices
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 4
SP - 301
EP - 306
AB - Let $ A_1, A_2,\cdots , A_n $ be complex matrices of the same size. We show in this note that the Moore-Penrose inverse, the Drazin inverse and the weighted Moore-Penrose inverse of the sum $ \sum _{t=1}^{n} A_t$ can all be determined by the block circulant matrix generated by $ A_1, A_2, \cdots , A_n$. In addition, some equalities are also presented for the Moore-Penrose inverse and the Drazin inverse of a quaternionic matrix.
LA - eng
KW - block circulant matrix; Moore-Penrose inverse; Drazin inverse; weighted Moore-Penrose inverse; quaternionic matrix; block circulant matrix; Moore-Penrose inverse; Drazin inverse; weighted Moore-Penrose inverse; quaternionic matrix
UR - http://eudml.org/doc/248752
ER -
References
top- Bell C. L., Generalized inverses of circulant and generalized circulant matrices, Linear Algebra Appl. 39 (1981), 133–142. (1981) Zbl0465.15003MR0625244
- Ben-Israel A., Greville T. N. E., Generalized Inverses: Theory and Applications, R. E. Krieger Publishing Company, New York, 1980. (1980) Zbl0451.15004MR0587113
- Davis P. J., Circulant Matrices, Wiley, New York, 1979. (1979) Zbl0418.15017MR0543191
- Searle S. R., On inverting circulant matrices, Linear Algebra Appl. 25 (1979), 77–89. (1979) Zbl0397.15004MR0528714
- Smith R. L., Moore-Penrose inverses of block circulant and block -circulant matrices, Linear Algebra Appl. 16 (1979), 237–245. (1979) MR0469933
- Tian Y., The Moore-Penrose inverses of block matrices and their applications, Linear Algebra Appl. 283 (1998), 35–60. (1998) Zbl0932.15004MR1657194
- Tian Y., Universal similarity factorization equalities over real Clifford algebras, Adv. Appl. Clifford Algebras 8 (1998), 365–402. (1998) Zbl0926.15026MR1698292
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.