The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Two spaces homeomorphic to S e q ( p )

Topologies on groups determined by right cancellable ultrafilters

Igor V. Protasov (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For every discrete group G , the Stone-Čech compactification β G of G has a natural structure of a compact right topological semigroup. An ultrafilter p G * , where G * = β G G , is called right cancellable if, given any q , r G * , q p = r p implies q = r . For every right cancellable ultrafilter p G * , we denote by G ( p ) the group G endowed with the strongest left invariant topology in which p converges to the identity of G . For any countable group G and any right cancellable ultrafilters p , q G * , we show that G ( p ) is homeomorphic to G ( q ) if...

ω H-sets and cardinal invariants

Alessandro Fedeli (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A subset A of a Hausdorff space X is called an ω H-set in X if for every open family 𝒰 in X such that A 𝒰 there exists a countable subfamily 𝒱 of 𝒰 such that A { V ¯ : V 𝒱 } . In this paper we introduce a new cardinal function t s θ and show that | A | 2 t s θ ( X ) ψ c ( X ) for every ω H-set A of a Hausdorff space X .