Displaying similar documents to “Fractional integro-differentiation in harmonic mixed norm spaces on a half-space”

On weighted spaces of functions harmonic in n

Albert I. Petrosyan (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper establishes integral representation formulas in arbitrarily wide Banach spaces b ω p ( n ) of functions harmonic in the whole n .

Commutators of the fractional maximal function on variable exponent Lebesgue spaces

Pu Zhang, Jianglong Wu (2014)

Czechoslovak Mathematical Journal

Similarity:

Let M β be the fractional maximal function. The commutator generated by M β and a suitable function b is defined by [ M β , b ] f = M β ( b f ) - b M β ( f ) . Denote by 𝒫 ( n ) the set of all measurable functions p ( · ) : n [ 1 , ) such that 1 < p - : = ess inf x n p ( x ) and p + : = ess sup x n p ( x ) < , and by ( n ) the set of all p ( · ) 𝒫 ( n ) such that the Hardy-Littlewood maximal function M is bounded on L p ( · ) ( n ) . In this paper, the authors give some characterizations of b for which [ M β , b ] is bounded from L p ( · ) ( n ) into L q ( · ) ( n ) , when p ( · ) 𝒫 ( n ) , 0 < β < n / p + and 1 / q ( · ) = 1 / p ( · ) - β / n with q ( · ) ( n - β ) / n ( n ) .

"Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits

A. Bonilla (2000)

Colloquium Mathematicae

Similarity:

We prove that, if μ>0, then there exists a linear manifold M of harmonic functions in N which is dense in the space of all harmonic functions in N and lim‖x‖→∞ x ∈ S ‖x‖μDαv(x) = 0 for every v ∈ M and multi-index α, where S denotes any hyperplane strip. Moreover, every nonnull function in M is universal. In particular, if μ ≥ N+1, then every function v ∈ M satisfies ∫H vdλ =0 for every (N-1)-dimensional hyperplane H, where λ denotes the (N-1)-dimensional Lebesgue measure. On the other...