Generalized tri-quotient maps and Čech-completeness
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 1, page 187-194
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDube, Themba, and Valov, Vesko M.. "Generalized tri-quotient maps and Čech-completeness." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 187-194. <http://eudml.org/doc/248803>.
@article{Dube2001,
abstract = {For a topological space $X$ let $\mathcal \{K\} (X)$ be the set of all compact subsets of $X$. The purpose of this paper is to characterize Lindelöf Čech-complete spaces $X$ by means of the sets $\mathcal \{K\} (X)$. Similar characterizations also hold for Lindelöf locally compact $X$, as well as for countably $K$-determined spaces $X$. Our results extend a classical result of J. Christensen.},
author = {Dube, Themba, Valov, Vesko M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Čech-complete spaces; Lindelöf spaces; tri-quotient maps; Čech-complete spaces; Lindelöf spaces; tri-quotient maps},
language = {eng},
number = {1},
pages = {187-194},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generalized tri-quotient maps and Čech-completeness},
url = {http://eudml.org/doc/248803},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Dube, Themba
AU - Valov, Vesko M.
TI - Generalized tri-quotient maps and Čech-completeness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 187
EP - 194
AB - For a topological space $X$ let $\mathcal {K} (X)$ be the set of all compact subsets of $X$. The purpose of this paper is to characterize Lindelöf Čech-complete spaces $X$ by means of the sets $\mathcal {K} (X)$. Similar characterizations also hold for Lindelöf locally compact $X$, as well as for countably $K$-determined spaces $X$. Our results extend a classical result of J. Christensen.
LA - eng
KW - Čech-complete spaces; Lindelöf spaces; tri-quotient maps; Čech-complete spaces; Lindelöf spaces; tri-quotient maps
UR - http://eudml.org/doc/248803
ER -
References
top- Bouziad A., Calbrix J., Čech-complete spaces and the upper topology, Topology Appl. 70 (1996), 133-138. (1996) Zbl0860.54002MR1397071
- Christensen J.P.R., Topology and Borel Structure, North-Holland, Amsterdam, 1974. Zbl0273.28001MR0348724
- Choban M., Chaber J., Nagami K., On monotone generalizations of Moore spaces, Čech-complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119. (1974) MR0343244
- Jayne J., Rogers C., Analytic Sets, Academic Press, London, 1980. Zbl0589.54047
- Michael E., -spaces, J. Mathematics and Mechanics 15.6 (1966), 983 -1002. (1966)
- Michael E., Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier, Grenoble 18 (1968), 2 287-302. (1968) Zbl0175.19704MR0244964
- Michael E., A quintuple quotient quest, General Topology and Appl. 2 (1972), 91-138. (1972) Zbl0238.54009MR0309045
- Michael E., Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733. (1977) Zbl0386.54007MR0467688
- Nagami K., -spaces, Fund. Math. 65 (1969), 169-192. (1969) Zbl0181.50701MR0257963
- Saint Raymond J., Caratérisations d'espaces polonais, Sém. Choquet (Initiation Anal.) 5 (1971-1973), 10.
- Valov V., Bounded function spaces with the compact open topology, Bull. Acad. Polish Sci. 45.2 (1997), 171-179. (1997) MR1466842
- Valov V., Spaces of bounded functions, Houston J. Math. 25.3 (1999), 501-521. (1999) Zbl0968.46019MR1730884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.