Generalized tri-quotient maps and Čech-completeness

Themba Dube; Vesko M. Valov

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 1, page 187-194
  • ISSN: 0010-2628

Abstract

top
For a topological space X let 𝒦 ( X ) be the set of all compact subsets of X . The purpose of this paper is to characterize Lindelöf Čech-complete spaces X by means of the sets 𝒦 ( X ) . Similar characterizations also hold for Lindelöf locally compact X , as well as for countably K -determined spaces X . Our results extend a classical result of J. Christensen.

How to cite

top

Dube, Themba, and Valov, Vesko M.. "Generalized tri-quotient maps and Čech-completeness." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 187-194. <http://eudml.org/doc/248803>.

@article{Dube2001,
abstract = {For a topological space $X$ let $\mathcal \{K\} (X)$ be the set of all compact subsets of $X$. The purpose of this paper is to characterize Lindelöf Čech-complete spaces $X$ by means of the sets $\mathcal \{K\} (X)$. Similar characterizations also hold for Lindelöf locally compact $X$, as well as for countably $K$-determined spaces $X$. Our results extend a classical result of J. Christensen.},
author = {Dube, Themba, Valov, Vesko M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Čech-complete spaces; Lindelöf spaces; tri-quotient maps; Čech-complete spaces; Lindelöf spaces; tri-quotient maps},
language = {eng},
number = {1},
pages = {187-194},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generalized tri-quotient maps and Čech-completeness},
url = {http://eudml.org/doc/248803},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Dube, Themba
AU - Valov, Vesko M.
TI - Generalized tri-quotient maps and Čech-completeness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 187
EP - 194
AB - For a topological space $X$ let $\mathcal {K} (X)$ be the set of all compact subsets of $X$. The purpose of this paper is to characterize Lindelöf Čech-complete spaces $X$ by means of the sets $\mathcal {K} (X)$. Similar characterizations also hold for Lindelöf locally compact $X$, as well as for countably $K$-determined spaces $X$. Our results extend a classical result of J. Christensen.
LA - eng
KW - Čech-complete spaces; Lindelöf spaces; tri-quotient maps; Čech-complete spaces; Lindelöf spaces; tri-quotient maps
UR - http://eudml.org/doc/248803
ER -

References

top
  1. Bouziad A., Calbrix J., Čech-complete spaces and the upper topology, Topology Appl. 70 (1996), 133-138. (1996) Zbl0860.54002MR1397071
  2. Christensen J.P.R., Topology and Borel Structure, North-Holland, Amsterdam, 1974. Zbl0273.28001MR0348724
  3. Choban M., Chaber J., Nagami K., On monotone generalizations of Moore spaces, Čech-complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119. (1974) MR0343244
  4. Jayne J., Rogers C., Analytic Sets, Academic Press, London, 1980. Zbl0589.54047
  5. Michael E., 0 -spaces, J. Mathematics and Mechanics 15.6 (1966), 983 -1002. (1966) 
  6. Michael E., Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier, Grenoble 18 (1968), 2 287-302. (1968) Zbl0175.19704MR0244964
  7. Michael E., A quintuple quotient quest, General Topology and Appl. 2 (1972), 91-138. (1972) Zbl0238.54009MR0309045
  8. Michael E., Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733. (1977) Zbl0386.54007MR0467688
  9. Nagami K., Σ -spaces, Fund. Math. 65 (1969), 169-192. (1969) Zbl0181.50701MR0257963
  10. Saint Raymond J., Caratérisations d'espaces polonais, Sém. Choquet (Initiation Anal.) 5 (1971-1973), 10. 
  11. Valov V., Bounded function spaces with the compact open topology, Bull. Acad. Polish Sci. 45.2 (1997), 171-179. (1997) MR1466842
  12. Valov V., Spaces of bounded functions, Houston J. Math. 25.3 (1999), 501-521. (1999) Zbl0968.46019MR1730884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.