Divisible effect algebras and interval effect algebras

Sylvia Pulmannová

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 2, page 219-236
  • ISSN: 0010-2628

Abstract

top
It is shown that divisible effect algebras are in one-to-one correspondence with unit intervals in partially ordered rational vector spaces.

How to cite

top

Pulmannová, Sylvia. "Divisible effect algebras and interval effect algebras." Commentationes Mathematicae Universitatis Carolinae 42.2 (2001): 219-236. <http://eudml.org/doc/248808>.

@article{Pulmannová2001,
abstract = {It is shown that divisible effect algebras are in one-to-one correspondence with unit intervals in partially ordered rational vector spaces.},
author = {Pulmannová, Sylvia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {effect algebras; divisible effect algebras; words; po-groups; divisible effect algebra; interval effect algebra; partially ordered group},
language = {eng},
number = {2},
pages = {219-236},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Divisible effect algebras and interval effect algebras},
url = {http://eudml.org/doc/248808},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Pulmannová, Sylvia
TI - Divisible effect algebras and interval effect algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 2
SP - 219
EP - 236
AB - It is shown that divisible effect algebras are in one-to-one correspondence with unit intervals in partially ordered rational vector spaces.
LA - eng
KW - effect algebras; divisible effect algebras; words; po-groups; divisible effect algebra; interval effect algebra; partially ordered group
UR - http://eudml.org/doc/248808
ER -

References

top
  1. Baer R., Free sums of groups and their generalizations. An analysis of the associative law, Amer. J. Math. 41 (1949), 706-742. (1949) Zbl0033.34504MR0030953
  2. Bennett M.K., Foulis D.J., Interval and scale effect algebras, Adv. in Appl. Math. 19 (1997), 200-215. (1997) Zbl0883.03048MR1459498
  3. Bigard A., Keimel K., Wolfenstein S., Groupes et Anneaux Réticulés, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0384.06022MR0552653
  4. Bugajski S., Fundamentals of fuzzy probability theory, Internat. J. Theoret. Phys. 35 (1996), 2229-2244. (1996) Zbl0872.60003MR1423402
  5. Bush P., Grabowski M., Lahti P., Operational Quantum Physics, Springer-Verlag, Berlin, 1995. MR1356220
  6. Cignoli R., D'Ottaviano I.M.L., Mundici D., Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publ., Dordrecht 2000. Zbl0937.06009MR1786097
  7. Dalla Chiara M.L., Giuntini R., Quantum logic, in Handbook of Philosophical logic, Eds. D. Gabbay, F. Guenthner, Kluwer Acad. Publ., Dordrecht, to appear. Zbl0969.03070MR1818789
  8. Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, 2000. MR1861369
  9. Dvurečenskij A., Riečan B., Weakly divisible MV-algebras and product, J. Math. Anal. Appl. 234 (1999), 208-222. (1999) MR1694841
  10. Foulis D.J., Bennett M.K., Effect algebras and unsharp quantum logics, Found. Phys. 37 (1994), 1325-1346. (1994) MR1304942
  11. Foulis D.J., Greechie R.J., Bennett M.K., Sums and products of interval effect algebras, Internat. J. Theoret. Phys. 33 (1994), 2119-2136. (1994) MR1311152
  12. Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford-London-New York-Paris, 1963. Zbl0137.02001MR0171864
  13. Goodearl K.R., Partially Ordered Abelian Groups with Interpolation, Math. Surveys and Monographs No 20, Amer. Math. Soc., Providence, Rhode Island, 1986. Zbl0589.06008MR0845783
  14. Gudder S., Pulmannová S., Representation theorem for convex effect algebras, Comment. Math. Univ. Carolinae 39 (1998), 645-659. (1998) MR1715455
  15. Gudder S.P. et all., Convex and linear effect algebras, Rep. Math. Phys. 44 (???), 359-379. (???) Zbl0956.46002MR1737384
  16. Kôpka F., Chovanec F., D-posets, Math. Slovaca 44 (1994), 21-34. (1994) MR1290269
  17. Ludwig G., Foundations of Quantum Mechanics, Springer-Verlag, New York, 1983. Zbl0574.46057MR0690770
  18. Mundici D., Interpretations of AF C*-algebras in Lukasziewicz sentential calculus, J. Funct. Anal. Appl. 65 (1986), 15-63. (1986) MR0819173
  19. Pulmannová S., Effect algebras with the Riesz decomposition property and AF C*-algebras, Found. Phys. 29 (1999), 1389-1400. (1999) MR1739751
  20. Ravindran K., On a structure theory of effect algebras, PhD Thesis, Kansas State University, Mahattan Kansas, 1996. 
  21. Wyler O., Clans, Compositio Math. 17 (1966/67), 172-189. (1966/67) MR0197368

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.