Admissible maps, intersection results, coincidence theorems

Mircea Balaj

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 4, page 753-762
  • ISSN: 0010-2628

Abstract

top
We obtain generalizations of the Fan's matching theorem for an open (or closed) covering related to an admissible map. Each of these is restated as a KKM theorem. Finally, applications concerning coincidence theorems and section results are given.

How to cite

top

Balaj, Mircea. "Admissible maps, intersection results, coincidence theorems." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 753-762. <http://eudml.org/doc/248812>.

@article{Balaj2001,
abstract = {We obtain generalizations of the Fan's matching theorem for an open (or closed) covering related to an admissible map. Each of these is restated as a KKM theorem. Finally, applications concerning coincidence theorems and section results are given.},
author = {Balaj, Mircea},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {acyclic map; convex space; matching theorem; coincidence theorem; acyclic map; convex space; matching theorem; coincidence theorem},
language = {eng},
number = {4},
pages = {753-762},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Admissible maps, intersection results, coincidence theorems},
url = {http://eudml.org/doc/248812},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Balaj, Mircea
TI - Admissible maps, intersection results, coincidence theorems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 753
EP - 762
AB - We obtain generalizations of the Fan's matching theorem for an open (or closed) covering related to an admissible map. Each of these is restated as a KKM theorem. Finally, applications concerning coincidence theorems and section results are given.
LA - eng
KW - acyclic map; convex space; matching theorem; coincidence theorem; acyclic map; convex space; matching theorem; coincidence theorem
UR - http://eudml.org/doc/248812
ER -

References

top
  1. Allen G., Variational inequalities, complementary problems and duality theorems, J. Math. Anal. Appl. 58 (1977), 1-10. (1977) MR0513305
  2. Balaj M., A variant of a fixed point theorem of Browder and some applications, Math. Montisnigri 9 (1998), 5-13. (1998) Zbl0999.47045MR1657668
  3. Ben-El-Mechaiekh H., Deguire P., Granas A., Points fixes et coincidences pour les applications multivoque, I , C.R. Acad. Sci. Paris 295 (1982), 337-340; II, 381-384. (1982) 
  4. Browder F.E., The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. (1968) Zbl0176.45204MR0229101
  5. Chang S.Y., A generalization of KKM principle and its applications, Soochow J. Math. 15 (1989), 7-17. (1989) Zbl0747.47033MR1025967
  6. Ding X.-P., Tan K.-K., Matching theorems, fixed point theorems, and minimax inequalities without convexity, J. Austral. Math. Soc. (Ser. A) 49 (1990), 111-128. (1990) Zbl0709.47053MR1054086
  7. Fan K., A generalization of Tychonoff's fixed point theorem, Math. Ann 142 (1961), 305-310. (1961) Zbl0093.36701MR0131268
  8. Fan K., A minimax inequality and applications, in ``Inequalities III'', O Shisha (ed.), Academic Press, New York, 1972, pp.103-113. Zbl0302.49019MR0341029
  9. Fan K., Fixed-point and related theorems for non-compact convex sets, in ``Game Theory and Related Topics'', O. Moeschlin and D. Pallaschke (eds.), North-Holland, Amsterdam, 1979, pp.151-156. Zbl0432.54040MR0556363
  10. Fan K., Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), 519-537. (1984) Zbl0515.47029MR0735533
  11. Gorniewicz L., A Lefschetz-type fixed point theorem, Fund. Math. 88 (1975), 103-115. (1975) Zbl0306.55007MR0391062
  12. Gorniewicz L., Homological methods in fixed point theory of multi-valued maps, Dissertationes Math. 129 (1976), 1-71. (1976) Zbl0324.55002MR0394637
  13. Ha C.-W., Minimax and fixed point theorems, Math. Ann. 248 (1980), 73-77. (1980) Zbl0413.47042MR0569411
  14. Kim W.K., Some applications of the Kakutani fixed point theorem, J. Math. Anal. Appl. 121 (1987), 119-122. (1987) Zbl0612.54055MR0869523
  15. Lassonde M., On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), 151-201. (1983) Zbl0527.47037MR0721236
  16. Lassonde M., Sur le principle KKM, C.R. Acad. Sci. Paris 310 (1990), 573-576. (1990) MR1050134
  17. Lin T.-C., Convex sets, fixed points, variational and minimax inequalities, Bull. Austral. Math. Soc. (Ser. A) 34 (1986), 107-117. (1986) Zbl0597.47038MR0847978
  18. Park S., Generalizations of Ky Fan's matching theorems and their applications, J. Math. Anal. Appl. 141 (1989), 164-176. (1989) Zbl0681.47028MR1004591
  19. Park S., Convex spaces and KKM families of subsets, Bull. Korean Math. Soc. 27 (1990), 11-14. (1990) Zbl0746.47036MR1060811
  20. Park S., Generalizations of Ky Fan’s matching theorems and their applications, I I , J. Korean Math. Soc. 28 (1991), 275-283. (1991) Zbl0813.47063MR1127832
  21. Park S., Some coincidence theorems on acyclic multifunctions and applications to KKM theory, in ``Fixed Point Theory and Applications'' (K.-K. Tan ed.), World Scientific, Publishing River Edge, NY, 1992, pp.248-277. MR1190044
  22. Park S., Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493-519. (1994) Zbl0829.49002MR1297433
  23. Park S., Ninety years of the Browder fixed point theorem, Vietnam J. Math. 27 (1999), 193-232. (1999) MR1811334
  24. Park S., Kim H., Coincidences of composites of u.s.c. maps on H -spaces and applications, J. Korean Math. Soc. 32 (1995), 251-264. (1995) Zbl0868.54015MR1338994
  25. Sehgal V.M., Singh S.P., Whitfield J.H.M., KKM-maps and fixed point theorems, Indian J. Math. 32 (1990), 289-296. (1990) MR1088610
  26. Shih M.-H., Covering properties of convex sets, Bull. London Math. Soc. 18 ((1986)), 57-59. ((1986)) Zbl0579.52004MR0841369
  27. Shih M.-H., Tan K.-K., Covering theorems of convex sets related to fixed-point theorems, in ``Nonlinear and Convex Analysis-Proc. in Honor of Ky Fan'' (B-L. Lin and S. Simons, eds.), Marcel Dekker, New York, 1987, pp.235-244. Zbl0637.47029MR0892795
  28. Shih M.-H., Tan K.K., A geometric property of convex sets with applications to minimax type inequalities and fixed point theorems, J. Austral. Math. Soc. 45 (1988), 169-183. (1988) Zbl0664.52001MR0951575
  29. Shioji N., A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorems, Proc. Amer. Math. Soc. 111 (1991), 187-195. (1991) MR1045601
  30. Takahashi W., Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan 28 (1976), 168-181. (1976) Zbl0314.47032MR0399979
  31. Tarafdar E., On nonlinear variational inequalities, Proc. Amer. Math. Soc. 67 (1977), 95-98. (1977) Zbl0369.47029MR0467408
  32. Tarafdar E., On minimax principles and sets with convex sections, Publ. Math. Debrecen 29 (1982), 219-226. (1982) Zbl0536.47038MR0678897

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.