G -space of isotropic directions and G -spaces of ϕ -scalars with G = O ( n , 1 , )

Aleksander Misiak; Eugeniusz Stasiak

Mathematica Bohemica (2008)

  • Volume: 133, Issue: 3, page 289-298
  • ISSN: 0862-7959

Abstract

top
There exist exactly four homomorphisms ϕ from the pseudo-orthogonal group of index one G = O ( n , 1 , ) into the group of real numbers 0 . Thus we have four G -spaces of ϕ -scalars ( , G , h ϕ ) in the geometry of the group G . The group G operates also on the sphere S n - 2 forming a G -space of isotropic directions ( S n - 2 , G , * ) . In this note, we have solved the functional equation F ( A * q 1 , A * q 2 , , A * q m ) = ϕ ( A ) · F ( q 1 , q 2 , , q m ) for given independent points q 1 , q 2 , , q m S n - 2 with 1 m n and an arbitrary matrix A G considering each of all four homomorphisms. Thereby we have determined all equivariant mappings F : ( S n - 2 ) m .

How to cite

top

Misiak, Aleksander, and Stasiak, Eugeniusz. "$G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb {R}) $." Mathematica Bohemica 133.3 (2008): 289-298. <http://eudml.org/doc/250540>.

@article{Misiak2008,
abstract = {There exist exactly four homomorphisms $\varphi $ from the pseudo-orthogonal group of index one $G=O( n,1,\mathbb \{R\}) $ into the group of real numbers $\mathbb \{R\}_0.$ Thus we have four $G$-spaces of $\varphi $-scalars $( \mathbb \{R\},G,h_\{\varphi \}) $ in the geometry of the group $G.$ The group $G$ operates also on the sphere $S^\{n-2\}$ forming a $G$-space of isotropic directions $( S^\{n-2\},G,\ast ) .$ In this note, we have solved the functional equation $F( A\ast q_1,A\ast q_2,\dots ,A\ast q_m) =\varphi ( A) \cdot F( q_1,q_2,\dots ,q_m) $ for given independent points $q_1,q_2,\dots ,q_m\in S^\{n-2\}$ with $1\le m\le n$ and an arbitrary matrix $A\in G$ considering each of all four homomorphisms. Thereby we have determined all equivariant mappings $F\colon ( S^\{n-2\}) ^m\rightarrow \mathbb \{R\}.$},
author = {Misiak, Aleksander, Stasiak, Eugeniusz},
journal = {Mathematica Bohemica},
keywords = {$G$-space; equivariant map; pseudo-Euclidean geometry; -space; equivariant map; pseudo-Euclidean geometry},
language = {eng},
number = {3},
pages = {289-298},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb \{R\}) $},
url = {http://eudml.org/doc/250540},
volume = {133},
year = {2008},
}

TY - JOUR
AU - Misiak, Aleksander
AU - Stasiak, Eugeniusz
TI - $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb {R}) $
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 3
SP - 289
EP - 298
AB - There exist exactly four homomorphisms $\varphi $ from the pseudo-orthogonal group of index one $G=O( n,1,\mathbb {R}) $ into the group of real numbers $\mathbb {R}_0.$ Thus we have four $G$-spaces of $\varphi $-scalars $( \mathbb {R},G,h_{\varphi }) $ in the geometry of the group $G.$ The group $G$ operates also on the sphere $S^{n-2}$ forming a $G$-space of isotropic directions $( S^{n-2},G,\ast ) .$ In this note, we have solved the functional equation $F( A\ast q_1,A\ast q_2,\dots ,A\ast q_m) =\varphi ( A) \cdot F( q_1,q_2,\dots ,q_m) $ for given independent points $q_1,q_2,\dots ,q_m\in S^{n-2}$ with $1\le m\le n$ and an arbitrary matrix $A\in G$ considering each of all four homomorphisms. Thereby we have determined all equivariant mappings $F\colon ( S^{n-2}) ^m\rightarrow \mathbb {R}.$
LA - eng
KW - $G$-space; equivariant map; pseudo-Euclidean geometry; -space; equivariant map; pseudo-Euclidean geometry
UR - http://eudml.org/doc/250540
ER -

References

top
  1. Aczél, J., Gołąb, S., Functionalgleichungen der Theorie der geometrischen Objekte, P.W.N. Warszawa (1960). (1960) 
  2. Bieszk, L., Stasiak, E., Sur deux formes équivalents de la notion de ( r , s ) -orientation de la géometrié de Klein, Publ. Math. Debrecen 35 (1988), 43-50. (1988) MR0971951
  3. Kucharzewski, M., 10.1007/BF02018051, Period. Math. Hungar. 8 (1977), 83-89. (1977) Zbl0335.50001MR0493695DOI10.1007/BF02018051
  4. Misiak, A., Stasiak, E., Equivariant maps between certain G -spaces with G = O ( n - 1 , 1 ) , Math. Bohem. 126 (2001), 555-560. (2001) Zbl1031.53031MR1970258
  5. Stasiak, E., On a certain action of the pseudoorthogonal group with index one O ( n , 1 , ) on the sphere S n - 2 , Polish Prace Naukowe P.S. 485 (1993). (1993) 
  6. Stasiak, E., Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1, Publ. Math. Debrecen 57 (2000), 55-69. (2000) Zbl0966.53012MR1771671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.