The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Weber's class invariants revisited”

The conductor of a cyclic quartic field using Gauss sums

Blair K. Spearman, Kenneth S. Williams (1997)

Czechoslovak Mathematical Journal

Similarity:

Let Q denote the field of rational numbers. Let K be a cyclic quartic extension of Q . It is known that there are unique integers A , B , C , D such that K = Q A ( D + B D ) , where A is squarefree and odd , D = B 2 + C 2 is squarefree , B > 0 , C > 0 , G C D ( A , D ) = 1 . The conductor f ( K ) of K is f ( K ) = 2 l | A | D , where l = 3 , if D 2 ( mod 4 ) or D 1 ( mod 4 ) , B 1 ( mod 2 ) , 2 , if D 1 ( mod 4 ) , B 0 ( mod 2 ) , A + B 3 ( mod 4 ) , 0 , if D 1 ( mod 4 ) , B 0 ( mod 2 ) , A + B 1 ( mod 4 ) . A simple proof of this formula for f ( K ) is given, which uses the basic properties of quartic Gauss sums.

The diophantine equation a x 2 + b x y + c y 2 = N , D = b 2 - 4 a c > 0

Keith Matthews (2002)

Journal de théorie des nombres de Bordeaux

Similarity:

We make more accessible a neglected simple continued fraction based algorithm due to Lagrange, for deciding the solubility of a x 2 + b x y + c y 2 = N in relatively prime integers x , y , where N 0 , gcd ( a , b , c ) = gcd ( a , N ) = 1 et D = b 2 - 4 a c > 0 is not a perfect square. In the case of solubility, solutions with least positive y, from each equivalence class, are also constructed. Our paper is a generalisation of an earlier paper by the author on the equation x 2 - D y 2 = N . As in that paper, we use a lemma on unimodular matrices that gives a much simpler proof than Lagrange’s...

On some equations over finite fields

Ioulia Baoulina (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, following L. Carlitz we consider some special equations of n variables over the finite field of q elements. We obtain explicit formulas for the number of solutions of these equations, under a certain restriction on n and q .