The Zeckendorf expansion of polynomial sequences
Michael Drmota; Wolfgang Steiner
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 2, page 439-475
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDrmota, Michael, and Steiner, Wolfgang. "The Zeckendorf expansion of polynomial sequences." Journal de théorie des nombres de Bordeaux 14.2 (2002): 439-475. <http://eudml.org/doc/248899>.
@article{Drmota2002,
abstract = {In the first part of the paper we prove that the Zeckendorf sum-of-digits function $s_z(n)$ and similarly defined functions evaluated on polynomial sequences of positive integers or primes satisfy a central limit theorem. We also prove that the Zeckendorf expansion and the $q$-ary expansions of integers are asymptotically independent.},
author = {Drmota, Michael, Steiner, Wolfgang},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {439-475},
publisher = {Université Bordeaux I},
title = {The Zeckendorf expansion of polynomial sequences},
url = {http://eudml.org/doc/248899},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Drmota, Michael
AU - Steiner, Wolfgang
TI - The Zeckendorf expansion of polynomial sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 439
EP - 475
AB - In the first part of the paper we prove that the Zeckendorf sum-of-digits function $s_z(n)$ and similarly defined functions evaluated on polynomial sequences of positive integers or primes satisfy a central limit theorem. We also prove that the Zeckendorf expansion and the $q$-ary expansions of integers are asymptotically independent.
LA - eng
UR - http://eudml.org/doc/248899
ER -
References
top- [1] N.L. Bassily, I. Kátai, Distribution of the values of q-additive functions on polynomial sequences. Acta Math. Hung.68 (1995), 353-361. Zbl0832.11035MR1333478
- [2] J. Coquet, Corrélation de suites arithmétiques. Sémin. Delange-Pisot-Poitou, 20e Année 1978/79, Exp. 15, 12 p. (1980). Zbl0432.10031MR582427
- [3] H. Delange, Sur les fonctions q-additives ou q-multiplicatives. Acta Arith.21 (1972), 285-298. Zbl0219.10062MR309891
- [4] R.L. Dobrušin, Central limit theorem for nonstationary Markov chains II. Theory Prob. Applications1 (1956), 329-383. (Translated from: Teor. Vareojatnost. i Primenen. 1 (1956), 365-425.) Zbl0093.15001MR97112
- [5] M. Drmota, The distribution of patterns in digital expansions. In: Algebraic Number Theory and Diophantine Analysis (F. Halter-Koch and R. F. Tichy eds.), de Gruyter, Berlin, 2000, 103-121. Zbl0958.11053MR1770457
- [6] M. Drmota, The joint distribution of q-additive functions. Acta Arith.100 (2001), 17-39. Zbl1057.11006MR1864623
- [7] M. Drmota, Irregularities of Distributions with Respect to Polytopes. Mathematika, 43 (1996), 108-119. Zbl0861.11045MR1401710
- [8] M. Drmota, M. Fuchs, E. Manstavicius, Functional Limit Theorems for Digital Expansions. Acta Math. Hung., to appear, Zbl1026.11013MR1440487
- [9] M. Drmota, R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics1651, Springer Verlag, Berlin, 1998. Zbl0877.11043MR1470456
- [10] J.M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions. J. Theoret. Comput. Sci.65 (1989), 153-169. Zbl0679.10010MR1020484
- [11] J.M. Dumont, A. Thomas, Gaussian asymptotic properties of the sum-of digits functions. J. Number Th.62 (1997), 19-38. Zbl0869.11009MR1430000
- [12] G. Farinole, Représentation des nombres réels sur la base du nombre d'or, Application aux nombres de Fibonacci. Prix Fermat Junior 1999, Quadrature39 (2000).
- [13] P. Grabner, R.F. Tichy, α-expansions, linear recurrences and the sum-of-digits function. Manuscripta Math.70 (1991), 311-324. Zbl0725.11005
- [14] L.K. Hua, Additive Theory of Prime Numbers. Translations of Mathematical Monographs Vol. 13, Am. Math. Soc., Providence, 1965. Zbl0192.39304MR194404
- [15] B.A. Lifšic, On the convergence of moments in the central limit theorem for nonhomogeneous Markov chains. Theory Prob. Applications20 (1975), 741-758. (Translated from: Teor. Vareojatnost. i Primenen. 20 (1975), 755-772.) Zbl0426.60021MR423534
- [16] E. Manstavicius, Probabilistic theory of additive functions related to systems of numerations. Analytic and Probabilistic Methods in Number Theory, VSP, Utrecht1997, 413-430. Zbl0964.11031MR1653626
- [17] E. Manstavicius, Sums of digits obey the Strassen law. In: Proceedings of the 38-th Conference of the Lithuanian Mathematical Society, R. Ciegis et al (Eds), Technika,, Vilnius, 1997, 33-38.
- [18] M. Mendès France, Nombres normaux. Applications aux fonctions pseudo-aléatoires. J. Analyse Math. 20 (1967) 1-56. Zbl0161.05002MR220683
- [19] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung.8 (1957), 477-493. Zbl0079.08901MR97374
- [20] I.M. Vinogradov, The method of trigonometrical sums in the theory of numbers. Interscience Publishers, London. Zbl1093.11001
- [21] M. Waldschmidt, Minorations de combinaisons tineaires de logarithmes de nombres algébriques. Can. J. Math.45 (1993), 176-224. Zbl0774.11036MR1200327
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.