Rational points on X 0 + ( N ) and quadratic -curves

Steven D. Galbraith

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 1, page 205-219
  • ISSN: 1246-7405

Abstract

top
The rational points on X 0 ( N ) / W N in the case where N is a composite number are considered. A computational study of some of the cases not covered by the results of Momose is given. Exceptional rational points are found in the cases N = 91 and N = 125 and the j -invariants of the corresponding quadratic -curves are exhibited.

How to cite

top

Galbraith, Steven D.. "Rational points on $X_0^+ (N)$ and quadratic $\mathbb {Q}$-curves." Journal de théorie des nombres de Bordeaux 14.1 (2002): 205-219. <http://eudml.org/doc/248907>.

@article{Galbraith2002,
abstract = {The rational points on $X_0(N)/W_N$ in the case where $N$ is a composite number are considered. A computational study of some of the cases not covered by the results of Momose is given. Exceptional rational points are found in the cases $N = 91$ and $N = 125$ and the $j$-invariants of the corresponding quadratic $\mathbb \{Q\}$-curves are exhibited.},
author = {Galbraith, Steven D.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Heegner point; quadratic -curves; -invariants; modular curve; elliptic curves; exceptional rational points},
language = {eng},
number = {1},
pages = {205-219},
publisher = {Université Bordeaux I},
title = {Rational points on $X_0^+ (N)$ and quadratic $\mathbb \{Q\}$-curves},
url = {http://eudml.org/doc/248907},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Galbraith, Steven D.
TI - Rational points on $X_0^+ (N)$ and quadratic $\mathbb {Q}$-curves
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 205
EP - 219
AB - The rational points on $X_0(N)/W_N$ in the case where $N$ is a composite number are considered. A computational study of some of the cases not covered by the results of Momose is given. Exceptional rational points are found in the cases $N = 91$ and $N = 125$ and the $j$-invariants of the corresponding quadratic $\mathbb {Q}$-curves are exhibited.
LA - eng
KW - Heegner point; quadratic -curves; -invariants; modular curve; elliptic curves; exceptional rational points
UR - http://eudml.org/doc/248907
ER -

References

top
  1. [1] A.O.L. Atkin, J. Lehner, Hecke Operators on Γ0(N), Math. Ann.185 (1970), 134-160. Zbl0177.34901
  2. [2] B.J. Birch, Heegner points of elliptic curves, AMS Symp. math.15 (1975), Inf. teor., Strutt. Corpi algebr., Convegni1973, 441-445. Zbl0317.14015MR384805
  3. [3] H. Cohen, N.-P. Skoruppa, D. Zagier, Tables of modular forms. Preprint, 1992. 
  4. [4] J.E. Cremona, Algorithms for modular elliptic curves. Cambridge (1992) Zbl0758.14042MR1201151
  5. [5] P. Deligne, M. Rappoport, Les schemas de modules de courbes elliptiques. In Modular Functions one Variable II, Springer Lecture Notes Math. 349 (1973), 143-316. Zbl0281.14010MR337993
  6. [6] N. Elkies, Remarks on elliptic K-curves, preprint, 1993. 
  7. [7] N. Elkies, Elliptic and modular curves over finite fields and related computational issues. In D. A. Buell and J. T. Teitelbaum (eds.), Computational Perspectives on Number Theory, AMS Studies in Advanced Math., 1998, 21-76. Zbl0915.11036MR1486831
  8. [8] S.D. Galbraith, Equations for Modular Curves. Doctoral Thesis, Oxford, 1996. 
  9. [9] S.D. Galbraith, Rational points on X0+(p). Experiment. Math.8 (1999), 311-318. Zbl0960.14010MR1737228
  10. [10] S.D. Galbraith, Constructing isogenies between elliptic curves over finite fields. London Math. Soc. J. Comp. Math.2 (1999), 118-138. Zbl1018.11028MR1728955
  11. [11] J. González, Equations of hyperelliptic modular curves. Ann. Inst. Fourier bf41 (1991), 779-795. Zbl0758.14010MR1150566
  12. [12] J. González, J.-C. Lario, Rational and elliptic parametrizations of Q-curves. J. Number Theory72 (1998), 13-31. Zbl0932.11037MR1643280
  13. [13] J. González, On the j-invariants of the quadratic Q-curves. J. London Math. Soc.63 (2001), 52-68. Zbl1010.11028MR1801716
  14. [14] B.H. Gross, Arithmetic on elliptic curves with complex multiplication. Lect. Notes Mathematics776, Springer, 1980. Zbl0433.14032MR563921
  15. [15] B.H. Gross, Heegner Points on X0(N). In Modular Forms, R. A. Rankin (ed.), Wiley, 1984, 87-105. Zbl0559.14011MR803364
  16. [16] B.H. Gross, D.B. Zagier, On singular moduli. J. Reine Angew. Math.355 (1985), 191-220. Zbl0545.10015MR772491
  17. [17] Y. Hasegawa, Table of quotient curves of modular curves X0(N) with genus 2. Proc. Japan Acad. Ser. A71 (1995), 235-239. Zbl0873.11040MR1373390
  18. [18] Y. Hasegawa, Q-curves over quadratic fields. Manuscripta Math.94 (1997), 347-364. Zbl0909.11017MR1485442
  19. [19] M.A. Kenku, On the Modular Curves X0(125), X0(25) and X0(49). J. London Math. Soc.23 (1981), 415-427. Zbl0425.14006MR616546
  20. [20] S. Lang, Elliptic Functions, 2nd edition. Springer GTM112, 1987. Zbl0615.14018MR890960
  21. [21] B. Mazur, Modular Curves and the Eisenstein Ideal. Pub. I.H.E.S, 47 (1977), 33-186. Zbl0394.14008MR488287
  22. [22] F. Momose, Rational Points on X0+(p r). J. Faculty of Science University of Tokyo Section 1A Mathematics33 (1986), 441-466. Zbl0621.14018MR866046
  23. [23] F. Momose, Rational Points on the Modular Curves X +0(N). J. Math. Soc. Japan39 (1987), 269-285. Zbl0623.14009MR879929
  24. [24] N. Murabayashi, On normal forms of modular curves of genus 2. Osaka J. Math.29 (1992), 405-418. Zbl0774.14025MR1173998
  25. [25] A. Ogg, Rational Points on Certain Elliptic Modular Curves. In H. Diamond (ed.), AMS Proc. Symp. Pure Math.24, 1973, 221-231. Zbl0273.14008MR337974
  26. [26] A. Ogg, Hyperelliptic Modular Curves. Bull. Soc. Math. France102 (1974), 449-462. Zbl0314.10018
  27. [27] K. Ribet, Abelian varieties over Q and modular forms. Proceedings of KAIST workshop (1992), 53-79. 
  28. [28] M. Shimura, Defining equations of modular curves X0(N). Tokyo J. Math.18 (1995), 443-456. Zbl0865.11052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.