Rational points on and quadratic -curves
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 1, page 205-219
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGalbraith, Steven D.. "Rational points on $X_0^+ (N)$ and quadratic $\mathbb {Q}$-curves." Journal de théorie des nombres de Bordeaux 14.1 (2002): 205-219. <http://eudml.org/doc/248907>.
@article{Galbraith2002,
abstract = {The rational points on $X_0(N)/W_N$ in the case where $N$ is a composite number are considered. A computational study of some of the cases not covered by the results of Momose is given. Exceptional rational points are found in the cases $N = 91$ and $N = 125$ and the $j$-invariants of the corresponding quadratic $\mathbb \{Q\}$-curves are exhibited.},
author = {Galbraith, Steven D.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Heegner point; quadratic -curves; -invariants; modular curve; elliptic curves; exceptional rational points},
language = {eng},
number = {1},
pages = {205-219},
publisher = {Université Bordeaux I},
title = {Rational points on $X_0^+ (N)$ and quadratic $\mathbb \{Q\}$-curves},
url = {http://eudml.org/doc/248907},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Galbraith, Steven D.
TI - Rational points on $X_0^+ (N)$ and quadratic $\mathbb {Q}$-curves
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 205
EP - 219
AB - The rational points on $X_0(N)/W_N$ in the case where $N$ is a composite number are considered. A computational study of some of the cases not covered by the results of Momose is given. Exceptional rational points are found in the cases $N = 91$ and $N = 125$ and the $j$-invariants of the corresponding quadratic $\mathbb {Q}$-curves are exhibited.
LA - eng
KW - Heegner point; quadratic -curves; -invariants; modular curve; elliptic curves; exceptional rational points
UR - http://eudml.org/doc/248907
ER -
References
top- [1] A.O.L. Atkin, J. Lehner, Hecke Operators on Γ0(N), Math. Ann.185 (1970), 134-160. Zbl0177.34901
- [2] B.J. Birch, Heegner points of elliptic curves, AMS Symp. math.15 (1975), Inf. teor., Strutt. Corpi algebr., Convegni1973, 441-445. Zbl0317.14015MR384805
- [3] H. Cohen, N.-P. Skoruppa, D. Zagier, Tables of modular forms. Preprint, 1992.
- [4] J.E. Cremona, Algorithms for modular elliptic curves. Cambridge (1992) Zbl0758.14042MR1201151
- [5] P. Deligne, M. Rappoport, Les schemas de modules de courbes elliptiques. In Modular Functions one Variable II, Springer Lecture Notes Math. 349 (1973), 143-316. Zbl0281.14010MR337993
- [6] N. Elkies, Remarks on elliptic K-curves, preprint, 1993.
- [7] N. Elkies, Elliptic and modular curves over finite fields and related computational issues. In D. A. Buell and J. T. Teitelbaum (eds.), Computational Perspectives on Number Theory, AMS Studies in Advanced Math., 1998, 21-76. Zbl0915.11036MR1486831
- [8] S.D. Galbraith, Equations for Modular Curves. Doctoral Thesis, Oxford, 1996.
- [9] S.D. Galbraith, Rational points on X0+(p). Experiment. Math.8 (1999), 311-318. Zbl0960.14010MR1737228
- [10] S.D. Galbraith, Constructing isogenies between elliptic curves over finite fields. London Math. Soc. J. Comp. Math.2 (1999), 118-138. Zbl1018.11028MR1728955
- [11] J. González, Equations of hyperelliptic modular curves. Ann. Inst. Fourier bf41 (1991), 779-795. Zbl0758.14010MR1150566
- [12] J. González, J.-C. Lario, Rational and elliptic parametrizations of Q-curves. J. Number Theory72 (1998), 13-31. Zbl0932.11037MR1643280
- [13] J. González, On the j-invariants of the quadratic Q-curves. J. London Math. Soc.63 (2001), 52-68. Zbl1010.11028MR1801716
- [14] B.H. Gross, Arithmetic on elliptic curves with complex multiplication. Lect. Notes Mathematics776, Springer, 1980. Zbl0433.14032MR563921
- [15] B.H. Gross, Heegner Points on X0(N). In Modular Forms, R. A. Rankin (ed.), Wiley, 1984, 87-105. Zbl0559.14011MR803364
- [16] B.H. Gross, D.B. Zagier, On singular moduli. J. Reine Angew. Math.355 (1985), 191-220. Zbl0545.10015MR772491
- [17] Y. Hasegawa, Table of quotient curves of modular curves X0(N) with genus 2. Proc. Japan Acad. Ser. A71 (1995), 235-239. Zbl0873.11040MR1373390
- [18] Y. Hasegawa, Q-curves over quadratic fields. Manuscripta Math.94 (1997), 347-364. Zbl0909.11017MR1485442
- [19] M.A. Kenku, On the Modular Curves X0(125), X0(25) and X0(49). J. London Math. Soc.23 (1981), 415-427. Zbl0425.14006MR616546
- [20] S. Lang, Elliptic Functions, 2nd edition. Springer GTM112, 1987. Zbl0615.14018MR890960
- [21] B. Mazur, Modular Curves and the Eisenstein Ideal. Pub. I.H.E.S, 47 (1977), 33-186. Zbl0394.14008MR488287
- [22] F. Momose, Rational Points on X0+(p r). J. Faculty of Science University of Tokyo Section 1A Mathematics33 (1986), 441-466. Zbl0621.14018MR866046
- [23] F. Momose, Rational Points on the Modular Curves X +0(N). J. Math. Soc. Japan39 (1987), 269-285. Zbl0623.14009MR879929
- [24] N. Murabayashi, On normal forms of modular curves of genus 2. Osaka J. Math.29 (1992), 405-418. Zbl0774.14025MR1173998
- [25] A. Ogg, Rational Points on Certain Elliptic Modular Curves. In H. Diamond (ed.), AMS Proc. Symp. Pure Math.24, 1973, 221-231. Zbl0273.14008MR337974
- [26] A. Ogg, Hyperelliptic Modular Curves. Bull. Soc. Math. France102 (1974), 449-462. Zbl0314.10018
- [27] K. Ribet, Abelian varieties over Q and modular forms. Proceedings of KAIST workshop (1992), 53-79.
- [28] M. Shimura, Defining equations of modular curves X0(N). Tokyo J. Math.18 (1995), 443-456. Zbl0865.11052
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.