Rational points on X 0 + ( p r )

Yuri Bilu[1]; Pierre Parent[2]; Marusia Rebolledo[3]

  • [1] IMB, Université Bordeaux 1 351 cours de la Libération 33405 Talence CEDEX, FRANCE
  • [2] IMB, Université Bordeaux 1 351 cours de la Libération 33405 Talence CEDEX FRANCE
  • [3] Université Blaise Pascal Clermont-Ferrand 2 Laboratoire de Mathématiques Campus universitaire des Cézeaux 63177 Aubière FRANCE

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 3, page 957-984
  • ISSN: 0373-0956

Abstract

top
Using the recent isogeny bounds due to Gaudron and Rémond we obtain the triviality of X 0 + ( p r ) ( ) , for r > 1 and  p a prime number exceeding 2 · 10 11 . This includes the case of the curves X split ( p ) . We then prove, with the help of computer calculations, that the same holds true for  p in the range 11 p 10 14 , p 13 . The combination of those results completes the qualitative study of rational points on X 0 + ( p r ) undertook in our previous work, with the only exception of  p r = 13 2 .

How to cite

top

Bilu, Yuri, Parent, Pierre, and Rebolledo, Marusia. "Rational points on $X_0^+ (p^r )$." Annales de l’institut Fourier 63.3 (2013): 957-984. <http://eudml.org/doc/275469>.

@article{Bilu2013,
abstract = {Using the recent isogeny bounds due to Gaudron and Rémond we obtain the triviality of $X_0^+ (p^r )(\mathbb\{Q\})$, for $\{r&gt;1\}$ and $p$ a prime number exceeding $2\cdot 10^\{11\}$. This includes the case of the curves $X_\{\mathrm\{split\}\} (p)$. We then prove, with the help of computer calculations, that the same holds true for $p$ in the range $11\le p\le 10^\{14\}$, $p\ne 13$. The combination of those results completes the qualitative study of rational points on $X_0^+ (p^r )$ undertook in our previous work, with the only exception of $p^r=13^2$.},
affiliation = {IMB, Université Bordeaux 1 351 cours de la Libération 33405 Talence CEDEX, FRANCE; IMB, Université Bordeaux 1 351 cours de la Libération 33405 Talence CEDEX FRANCE; Université Blaise Pascal Clermont-Ferrand 2 Laboratoire de Mathématiques Campus universitaire des Cézeaux 63177 Aubière FRANCE},
author = {Bilu, Yuri, Parent, Pierre, Rebolledo, Marusia},
journal = {Annales de l’institut Fourier},
keywords = {Elliptic curves; modular curves; rational points; Runge’s method; isogeny bounds; Gross-Heegner points; elliptic curves; Runge's method},
language = {eng},
number = {3},
pages = {957-984},
publisher = {Association des Annales de l’institut Fourier},
title = {Rational points on $X_0^+ (p^r )$},
url = {http://eudml.org/doc/275469},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Bilu, Yuri
AU - Parent, Pierre
AU - Rebolledo, Marusia
TI - Rational points on $X_0^+ (p^r )$
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 957
EP - 984
AB - Using the recent isogeny bounds due to Gaudron and Rémond we obtain the triviality of $X_0^+ (p^r )(\mathbb{Q})$, for ${r&gt;1}$ and $p$ a prime number exceeding $2\cdot 10^{11}$. This includes the case of the curves $X_{\mathrm{split}} (p)$. We then prove, with the help of computer calculations, that the same holds true for $p$ in the range $11\le p\le 10^{14}$, $p\ne 13$. The combination of those results completes the qualitative study of rational points on $X_0^+ (p^r )$ undertook in our previous work, with the only exception of $p^r=13^2$.
LA - eng
KW - Elliptic curves; modular curves; rational points; Runge’s method; isogeny bounds; Gross-Heegner points; elliptic curves; Runge's method
UR - http://eudml.org/doc/275469
ER -

References

top
  1.  
  2.  Zbl1225.11088MR2820153
  3. B. Baran, An exceptional isomorphism between modular curves of level 13 Zbl1304.11054MR2806555
  4. Yuri Bilu, Marco Illengo, Effective Siegel’s theorem for modular curves, Bull. Lond. Math. Soc. 43 (2011), 673-688 Zbl1278.11065MR2753610
  5. Yuri Bilu, Pierre Parent, Runge’s method and modular curves, Int. Math. Res. Not. IMRN (2011), 1997-2027 Zbl1041.11045MR1975445
  6. Yuri Bilu, Pierre Parent, Serre’s uniformity problem in the split Cartan case, Ann. of Math. (2) 173 (2011), 569-584 Zbl1278.11069MR2685127
  7. Yuri F. Bilu, Baker’s method and modular curves, A panorama of number theory or the view from Baker’s garden (Zürich, 1999) (2002), 73-88, Cambridge Univ. Press, Cambridge Zbl1106.11020MR2078072
  8. Nils Bruin, Michael Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272-306 Zbl1278.11069MR2685127
  9. Imin Chen, Jacobians of modular curves associated to normalizers of Cartan subgroups of level p n , C. R. Math. Acad. Sci. Paris 339 (2004), 187-192 Zbl0281.14010MR330050
  10. P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (1973), 143-316. Lecture Notes in Math., Vol. 349, Springer, Berlin Zbl1166.11335MR2058644
  11. Noam D. Elkies, On elliptic K -curves, Modular curves and abelian varieties 224 (2004), 81-91, Birkhäuser, Basel Zbl0588.14026MR718935
  12. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366 Zbl0960.14010MR1737228
  13. Steven D. Galbraith, Rational points on X 0 + ( p ) , Experiment. Math. 8 (1999), 311-318 Zbl1035.14008MR1925998
  14. Steven D. Galbraith, Rational points on X 0 + ( N ) and quadratic -curves, J. Théor. Nombres Bordeaux 14 (2002), 205-219 Zbl1035.14008MR1925998
  15. É. Gaudron, G. Rémond, Théorème des périodes et degrés minimaux d’isogénies, (2011) Zbl1010.11028MR1801716
  16. Josep González, On the j -invariants of the quadratic Q -curves, J. London Math. Soc. (2) 63 (2001), 52-68 Zbl0433.14032MR563921
  17. Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication, 776 (1980), Springer, Berlin Zbl0623.10019MR894322
  18. Benedict H. Gross, Heights and the special values of L -series, Number theory (Montreal, Que., 1985) 7 (1987), 115-187, Amer. Math. Soc., Providence, RI Zbl0894.11019MR1482891
  19. Takeshi Hibino, Naoki Murabayashi, Modular equations of hyperelliptic X 0 ( N ) and an application, Acta Arith. 82 (1997), 279-291 Zbl0492.12002MR648603
  20. Daniel S. Kubert, Serge Lang, Modular units, 244 (1981), Springer-Verlag, New York Zbl0722.14027MR1037140
  21. D. W. Masser, G. Wüstholz, Estimating isogenies on elliptic curves, Invent. Math. 100 (1990), 1-24 Zbl0394.14008MR488287
  22. B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), 33-186 (1978) Zbl0386.14009MR482230
  23. B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), 129-162 Zbl1020.11041MR1861089
  24. Loïc Merel, Sur la nature non-cyclotomique des points d’ordre fini des courbes elliptiques, Duke Math. J. 110 (2001), 81-119 Zbl1220.11074MR2349658
  25. Loïc Merel, Normalizers of split Cartan subgroups and supersingular elliptic curves, Diophantine geometry 4 (2007), 237-255, Ed. Norm., Pisa Zbl0574.14023MR742701
  26. Fumiyuki Momose, Rational points on the modular curves X split ( p ) , Compositio Math. 52 (1984), 115-137 Zbl0621.14018MR866046
  27. Fumiyuki Momose, Rational points on the modular curves X 0 + ( p r ) , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 441-466 Zbl1032.11024MR1892103
  28. Fumiyuki Momose, Mahoro Shimura, Lifting of supersingular points on X 0 ( p r ) and lower bound of ramification index, Nagoya Math. J. 165 (2002), 159-178 Zbl1167.11310MR2135276
  29. Pierre J. R. Parent, Towards the triviality of X 0 + ( p r ) ( ) for r &gt; 1 , Compos. Math. 141 (2005), 561-572 Zbl0986.11046MR1865384
  30. Federico Pellarin, Sur une majoration explicite pour un degré d’isogénie liant deux courbes elliptiques, Acta Arith. 100 (2001), 203-243 Zbl1167.11023MR2375318
  31. Marusia Rebolledo, Module supersingulier, formule de Gross-Kudla et points rationnels de courbes modulaires, Pacific J. Math. 234 (2008), 167-184 Zbl1167.11023MR2375318
  32. Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331 Zbl0235.14012MR387283
  33. Goro Shimura, Introduction to the arithmetic theory of automorphic functions, (1971), Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo Zbl0221.10029MR314766
  34. Joseph H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) (1986), 253-265, Springer, New York Zbl0603.14020MR861979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.