Rational points on
Yuri Bilu[1]; Pierre Parent[2]; Marusia Rebolledo[3]
- [1] IMB, Université Bordeaux 1 351 cours de la Libération 33405 Talence CEDEX, FRANCE
- [2] IMB, Université Bordeaux 1 351 cours de la Libération 33405 Talence CEDEX FRANCE
- [3] Université Blaise Pascal Clermont-Ferrand 2 Laboratoire de Mathématiques Campus universitaire des Cézeaux 63177 Aubière FRANCE
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 3, page 957-984
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBilu, Yuri, Parent, Pierre, and Rebolledo, Marusia. "Rational points on $X_0^+ (p^r )$." Annales de l’institut Fourier 63.3 (2013): 957-984. <http://eudml.org/doc/275469>.
@article{Bilu2013,
abstract = {Using the recent isogeny bounds due to Gaudron and Rémond we obtain the triviality of $X_0^+ (p^r )(\mathbb\{Q\})$, for $\{r>1\}$ and $p$ a prime number exceeding $2\cdot 10^\{11\}$. This includes the case of the curves $X_\{\mathrm\{split\}\} (p)$. We then prove, with the help of computer calculations, that the same holds true for $p$ in the range $11\le p\le 10^\{14\}$, $p\ne 13$. The combination of those results completes the qualitative study of rational points on $X_0^+ (p^r )$ undertook in our previous work, with the only exception of $p^r=13^2$.},
affiliation = {IMB, Université Bordeaux 1 351 cours de la Libération 33405 Talence CEDEX, FRANCE; IMB, Université Bordeaux 1 351 cours de la Libération 33405 Talence CEDEX FRANCE; Université Blaise Pascal Clermont-Ferrand 2 Laboratoire de Mathématiques Campus universitaire des Cézeaux 63177 Aubière FRANCE},
author = {Bilu, Yuri, Parent, Pierre, Rebolledo, Marusia},
journal = {Annales de l’institut Fourier},
keywords = {Elliptic curves; modular curves; rational points; Runge’s method; isogeny bounds; Gross-Heegner points; elliptic curves; Runge's method},
language = {eng},
number = {3},
pages = {957-984},
publisher = {Association des Annales de l’institut Fourier},
title = {Rational points on $X_0^+ (p^r )$},
url = {http://eudml.org/doc/275469},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Bilu, Yuri
AU - Parent, Pierre
AU - Rebolledo, Marusia
TI - Rational points on $X_0^+ (p^r )$
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 957
EP - 984
AB - Using the recent isogeny bounds due to Gaudron and Rémond we obtain the triviality of $X_0^+ (p^r )(\mathbb{Q})$, for ${r>1}$ and $p$ a prime number exceeding $2\cdot 10^{11}$. This includes the case of the curves $X_{\mathrm{split}} (p)$. We then prove, with the help of computer calculations, that the same holds true for $p$ in the range $11\le p\le 10^{14}$, $p\ne 13$. The combination of those results completes the qualitative study of rational points on $X_0^+ (p^r )$ undertook in our previous work, with the only exception of $p^r=13^2$.
LA - eng
KW - Elliptic curves; modular curves; rational points; Runge’s method; isogeny bounds; Gross-Heegner points; elliptic curves; Runge's method
UR - http://eudml.org/doc/275469
ER -
References
top- Zbl1225.11088MR2820153
- B. Baran, An exceptional isomorphism between modular curves of level 13 Zbl1304.11054MR2806555
- Yuri Bilu, Marco Illengo, Effective Siegel’s theorem for modular curves, Bull. Lond. Math. Soc. 43 (2011), 673-688 Zbl1278.11065MR2753610
- Yuri Bilu, Pierre Parent, Runge’s method and modular curves, Int. Math. Res. Not. IMRN (2011), 1997-2027 Zbl1041.11045MR1975445
- Yuri Bilu, Pierre Parent, Serre’s uniformity problem in the split Cartan case, Ann. of Math. (2) 173 (2011), 569-584 Zbl1278.11069MR2685127
- Yuri F. Bilu, Baker’s method and modular curves, A panorama of number theory or the view from Baker’s garden (Zürich, 1999) (2002), 73-88, Cambridge Univ. Press, Cambridge Zbl1106.11020MR2078072
- Nils Bruin, Michael Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272-306 Zbl1278.11069MR2685127
- Imin Chen, Jacobians of modular curves associated to normalizers of Cartan subgroups of level , C. R. Math. Acad. Sci. Paris 339 (2004), 187-192 Zbl0281.14010MR330050
- P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (1973), 143-316. Lecture Notes in Math., Vol. 349, Springer, Berlin Zbl1166.11335MR2058644
- Noam D. Elkies, On elliptic -curves, Modular curves and abelian varieties 224 (2004), 81-91, Birkhäuser, Basel Zbl0588.14026MR718935
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366 Zbl0960.14010MR1737228
- Steven D. Galbraith, Rational points on , Experiment. Math. 8 (1999), 311-318 Zbl1035.14008MR1925998
- Steven D. Galbraith, Rational points on and quadratic -curves, J. Théor. Nombres Bordeaux 14 (2002), 205-219 Zbl1035.14008MR1925998
- É. Gaudron, G. Rémond, Théorème des périodes et degrés minimaux d’isogénies, (2011) Zbl1010.11028MR1801716
- Josep González, On the -invariants of the quadratic -curves, J. London Math. Soc. (2) 63 (2001), 52-68 Zbl0433.14032MR563921
- Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication, 776 (1980), Springer, Berlin Zbl0623.10019MR894322
- Benedict H. Gross, Heights and the special values of -series, Number theory (Montreal, Que., 1985) 7 (1987), 115-187, Amer. Math. Soc., Providence, RI Zbl0894.11019MR1482891
- Takeshi Hibino, Naoki Murabayashi, Modular equations of hyperelliptic and an application, Acta Arith. 82 (1997), 279-291 Zbl0492.12002MR648603
- Daniel S. Kubert, Serge Lang, Modular units, 244 (1981), Springer-Verlag, New York Zbl0722.14027MR1037140
- D. W. Masser, G. Wüstholz, Estimating isogenies on elliptic curves, Invent. Math. 100 (1990), 1-24 Zbl0394.14008MR488287
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), 33-186 (1978) Zbl0386.14009MR482230
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), 129-162 Zbl1020.11041MR1861089
- Loïc Merel, Sur la nature non-cyclotomique des points d’ordre fini des courbes elliptiques, Duke Math. J. 110 (2001), 81-119 Zbl1220.11074MR2349658
- Loïc Merel, Normalizers of split Cartan subgroups and supersingular elliptic curves, Diophantine geometry 4 (2007), 237-255, Ed. Norm., Pisa Zbl0574.14023MR742701
- Fumiyuki Momose, Rational points on the modular curves , Compositio Math. 52 (1984), 115-137 Zbl0621.14018MR866046
- Fumiyuki Momose, Rational points on the modular curves , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 441-466 Zbl1032.11024MR1892103
- Fumiyuki Momose, Mahoro Shimura, Lifting of supersingular points on and lower bound of ramification index, Nagoya Math. J. 165 (2002), 159-178 Zbl1167.11310MR2135276
- Pierre J. R. Parent, Towards the triviality of for , Compos. Math. 141 (2005), 561-572 Zbl0986.11046MR1865384
- Federico Pellarin, Sur une majoration explicite pour un degré d’isogénie liant deux courbes elliptiques, Acta Arith. 100 (2001), 203-243 Zbl1167.11023MR2375318
- Marusia Rebolledo, Module supersingulier, formule de Gross-Kudla et points rationnels de courbes modulaires, Pacific J. Math. 234 (2008), 167-184 Zbl1167.11023MR2375318
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331 Zbl0235.14012MR387283
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, (1971), Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo Zbl0221.10029MR314766
- Joseph H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) (1986), 253-265, Springer, New York Zbl0603.14020MR861979
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.