Polynomial cycles in certain rings of rationals

Władysław Narkiewicz

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 529-552
  • ISSN: 1246-7405

Abstract

top
It is shown that the methods established in [HKN3] can be effectively used to study polynomial cycles in certain rings. We shall consider the rings 𝐙 [ 1 N ] and shall describe polynomial cycles in the case when N is either odd or twice a prime.

How to cite

top

Narkiewicz, Władysław. "Polynomial cycles in certain rings of rationals." Journal de théorie des nombres de Bordeaux 14.2 (2002): 529-552. <http://eudml.org/doc/248910>.

@article{Narkiewicz2002,
abstract = {It is shown that the methods established in [HKN3] can be effectively used to study polynomial cycles in certain rings. We shall consider the rings $\mathbf \{Z\} [\frac\{1\}\{N\}]$ and shall describe polynomial cycles in the case when $N$ is either odd or twice a prime.},
author = {Narkiewicz, Władysław},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {529-552},
publisher = {Université Bordeaux I},
title = {Polynomial cycles in certain rings of rationals},
url = {http://eudml.org/doc/248910},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Narkiewicz, Władysław
TI - Polynomial cycles in certain rings of rationals
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 529
EP - 552
AB - It is shown that the methods established in [HKN3] can be effectively used to study polynomial cycles in certain rings. We shall consider the rings $\mathbf {Z} [\frac{1}{N}]$ and shall describe polynomial cycles in the case when $N$ is either odd or twice a prime.
LA - eng
UR - http://eudml.org/doc/248910
ER -

References

top
  1. [A1] L.J. Alex, Diophantine equations related to finite groups. Comm. Algebra4 (1976), 77-100. Zbl0324.20010MR424675
  2. [A2] L.J. Alex, On the diophantine equation 1 + 2α = 3b5c + 2d3e5f. Math. Comp.44 (1985), 267-278. 
  3. [AF1] L.J. Alex, L.L. Foster, On the diophantine equation 1 + pa =2b + 2cpd. Rocky Mount. J. Math.15 (1985), 739-761. Zbl0589.10017MR813272
  4. [AF2] L.J. Alex, L.L. Foster, On the diophantine equation 1 + x + y = z. Rocky Mount. J. Math.22 (1992), 11-62. Zbl0760.11013MR1159941
  5. [Ba] C. Batut, D. Bernardi, H. Cohen, M. Olivier, User's Guide to PARI-GP, Bordeaux1994. 
  6. [Ca] J.W.S. Cassels, On the equation ax - by = 1. Amer. J. Math.75 (1953), 159-162. Zbl0050.03703MR51851
  7. [Co] J.H.E. Cohn, The Diophantine equation x2 + 3 = yn. Glasgow Math. J.35 (1993), 203-206. Zbl0779.11015MR1220562
  8. [Da] M. Daberkow, C. Fieker, J. Kluners, M. Pohst, K. Roegner, M. Schornig, K. Wildanger, Kant V4. J. Symbolic Comput. 24 (1997), 267-283. Zbl0886.11070MR1484479
  9. [HKN1] F. Halter-Koch, W. Narkiewicz, Polynomial cycles in finitely generated domains. Monatsh. Math.119 (1995), 275-279. Zbl0840.13003MR1328818
  10. [HKN2] F. Halter-Koch, W. Narkiewicz, Polynomial cycles and dynamical units. Proc. Conf. Analytic and Elementary Number Theory, 70-80, Wien, 1996. Zbl0882.12003
  11. [HKN3] F. Halter-Koch, W. Narkiewicz, Scarcity of finite polynomial orbits. Publ. Math. Debrecen56 (2000), 405-414. Zbl0961.11005MR1765989
  12. [Le] D.H. Lehmer, On a problem of Störmer. Illinois J. Math.8 (1964), 57-79. Zbl0124.27202MR158849
  13. [Len] H.W. LenstraJr., Euclidean number fields of large degree. Invent. Math.38 (1977), 237-254. Zbl0328.12007MR429826
  14. [LN] A. Leutbecher, G. Niklasch, On cliques of exceptional units and Lenstra's construction of Euclidean fields. Number Theory, Lecture Notes in Math.1380, 150-178, Springer, 1989. Zbl0703.11056MR1009799
  15. [MDT] D Z. Mo, R.TIJDEMAN, Exponential diophantine equations with four terms. Indag. Math.(N.S.) 3 (1992), 47-57. Zbl0765.11018MR1157518
  16. [Mo] P. Morton, Arithmetic properties of periodic points of quadratic maps, II. Acta Arith.87 (1998), 89-102. Zbl1029.12002MR1665198
  17. [N1] W. Narkiewicz, Polynomial Mappings. Lecture Notes in Math.1600, Springer, 1995. Zbl0829.11002MR1367962
  18. [NP] W. Narkiewicz, T. Pezda, Finite polynomial orbits in finitely generated domains. Monatsh. Math.124 (1997), 309-316. Zbl0897.13024MR1480362
  19. [Pe] T. Pezda, Polynomial cycles in certain local domains. Acta Arith.66 (1994), 11-22. Zbl0803.11063MR1262650
  20. [Pi] S.S. Pillai, On the equation 2x - 3y = 2X + 3Y. Bull. Calcutta Math. Soc.37 (1945), 15-20. Zbl0063.06245
  21. [Sch] H.P. Schlickewei, S-units equations over number fields. Invent. Math.102 (1990), 95-107. Zbl0711.11017MR1069241
  22. [Sc] R. Scott, On the equation px - by = c and ax + by = cz. J. Number Theory44 (1993), 153-165. Zbl0786.11020MR1225949
  23. [Si] W. Sierpinski, Sur une question concernant le nombre de diviseurs premiers d'un nombre naturel. Colloq. Math.6 (1958), 209-210. Zbl0086.03503MR104621
  24. [Sk] C.M. Skinner, On the diophantine equation apx +bqy = c + dpz qw. J. Number Theory35 (1990), 194-207. Zbl0703.11017MR1057322
  25. [St] C. Störmer, Quelques théorèmes sur l'équation de Pell x2 - Dy2 = ±1 et leurs applications. Skr. Vidensk.-selsk. (Christiania) I, Mat. Naturv. Kl. (1897), no.2, 1-48. 
  26. [TW] R. Tijdeman, L. Wang, Sums of products of powers of given prime numbers. Pacific J. Math.132 (1988), 177-193; corr. ibidem135 (1988), 396-398. Zbl0606.10012MR929588
  27. [Wa] C.T.C. Wall, A theorem on prime powers. Eureka19 (1957), 10-11. MR83499
  28. [Wg] L.X. Wang, Four terms equations. Indag. Math.51 (1989), 355-361. Zbl0698.10011MR1020029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.