A Gauss-Kuzmin theorem for the Rosen fractions

Gabriela I. Sebe

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 667-682
  • ISSN: 1246-7405

Abstract

top
Using the natural extensions for the Rosen maps, we give an infinite-order-chain representation of the sequence of the incomplete quotients of the Rosen fractions. Together with the ergodic behaviour of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the above fraction expansion.

How to cite

top

Sebe, Gabriela I.. "A Gauss-Kuzmin theorem for the Rosen fractions." Journal de théorie des nombres de Bordeaux 14.2 (2002): 667-682. <http://eudml.org/doc/248914>.

@article{Sebe2002,
abstract = {Using the natural extensions for the Rosen maps, we give an infinite-order-chain representation of the sequence of the incomplete quotients of the Rosen fractions. Together with the ergodic behaviour of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the above fraction expansion.},
author = {Sebe, Gabriela I.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Rosen fractions; Gauss-Kuzmin theorem},
language = {eng},
number = {2},
pages = {667-682},
publisher = {Université Bordeaux I},
title = {A Gauss-Kuzmin theorem for the Rosen fractions},
url = {http://eudml.org/doc/248914},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Sebe, Gabriela I.
TI - A Gauss-Kuzmin theorem for the Rosen fractions
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 667
EP - 682
AB - Using the natural extensions for the Rosen maps, we give an infinite-order-chain representation of the sequence of the incomplete quotients of the Rosen fractions. Together with the ergodic behaviour of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the above fraction expansion.
LA - eng
KW - Rosen fractions; Gauss-Kuzmin theorem
UR - http://eudml.org/doc/248914
ER -

References

top
  1. [1] R.M. Burton, C. Kraaikamp, T.A. Schmidt, Natural extensions for the Rosen fractions. Trans. Amer. Math. Soc.352 (2000), 1277-1298. Zbl0938.11036MR1650073
  2. [2] K. Gröchenig, A. Haas, Backward continued fractions and their invariant measures. Canad. Math. Bull.39 (1996), 186-198. Zbl0863.11045MR1390354
  3. [3] A. Haas, C. Series, The Hurwitz constant and Diophantine approximation on Hecke groups. J. London Math. Soc.34 (1986), 219-234. Zbl0605.10018MR856507
  4. [4] M. Iosifescu, A basic tool in mathematical chaos theory: Doeblin and Fortet's ergodic theorem and Ionescu Tulcea-Marinescu's generalization. In: Doeblin and Modern Probability (Blaubeuren, 1991), 111-124. Contemp. Math. 149, Amer. Math. Soc.Providence, RI, 1993. Zbl0801.47003MR1229957
  5. [5] M. Iosifescu, On the Gauss-Kuzmin-Lévy theorem, III. Rev. Roumaine Math. Pures Appl.42 (1997), 71-88. Zbl1013.11045MR1650087
  6. [6] M. Iosifescu S.GRIGORESCU, Dependence with complete connections and its applications. Cambridge Univ. Press, Cambrigde, 1990. Zbl0749.60067MR1070097
  7. [7] J. Lehner, Diophantine approximation on Hecke groups, Glasgow Math. J.27 (1985), 117-127. Zbl0576.10023MR819833
  8. [8] J. Lehner, Lagrange's theorem for Hecke triangle groups. In: A tribute to Emil Grosswald: number theory and related analysis, 477-480, Contemp. Math. 143, Amer. Math. Soc., Providence, RI, 1993. Zbl0790.11004MR1210534
  9. [9] H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions. Tokyo J. Math.7 (1981), 399-426. Zbl0479.10029MR646050
  10. [10] H. Nakada, Continued fractions, geodesic flows and Ford circles. In: Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), 179-191, Plenum, New York, 1995. Zbl0868.30005MR1402490
  11. [11] D. Rosen, A class of continued fractions associated with certain properly discontinuous groups. Duke Math. J.21 (1954), 549-563. Zbl0056.30703MR65632
  12. [12] D. Rosen, T.A. Schmidt, Hecke groups and continued fractions. Bull. Austral. Math. Soc.46 (1992), 459-474. Zbl0754.11012MR1190349
  13. [13] T.A. Schmidt, Remarks on the Rosen λ-continued fractions. In: Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991), 227-238, Lecture Notes in Pure and Appl. Math., 147, Dekker, New York, 1993. Zbl0790.11043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.