Digital expansion of exponential sequences

Michael Fuchs

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 477-487
  • ISSN: 1246-7405

Abstract

top
We consider the q -ary digital expansion of the first N terms of an exponential sequence a n . Using a result due to Kiss and Tichy [8], we prove that the average number of occurrences of an arbitrary digital block in the last c log N digits is asymptotically equal to the expected value. Under stronger assumptions we get a similar result for the first ( log N ) 3 2 - ϵ digits, where ϵ is a positive constant. In both methods, we use estimations of exponential sums and the concept of discrepancy of real sequences modulo 1 plays an important role.

How to cite

top

Fuchs, Michael. "Digital expansion of exponential sequences." Journal de théorie des nombres de Bordeaux 14.2 (2002): 477-487. <http://eudml.org/doc/248923>.

@article{Fuchs2002,
abstract = {We consider the $q$-ary digital expansion of the first $N$ terms of an exponential sequence $a^n$. Using a result due to Kiss and Tichy [8], we prove that the average number of occurrences of an arbitrary digital block in the last $c \log N$ digits is asymptotically equal to the expected value. Under stronger assumptions we get a similar result for the first $(\log N)^\{\frac\{3\}\{2\}-\epsilon \}$ digits, where $\epsilon $ is a positive constant. In both methods, we use estimations of exponential sums and the concept of discrepancy of real sequences modulo $1$ plays an important role.},
author = {Fuchs, Michael},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {digital expansion; exponential sequence; subblock occurrence; sum-of-digits function},
language = {eng},
number = {2},
pages = {477-487},
publisher = {Université Bordeaux I},
title = {Digital expansion of exponential sequences},
url = {http://eudml.org/doc/248923},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Fuchs, Michael
TI - Digital expansion of exponential sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 477
EP - 487
AB - We consider the $q$-ary digital expansion of the first $N$ terms of an exponential sequence $a^n$. Using a result due to Kiss and Tichy [8], we prove that the average number of occurrences of an arbitrary digital block in the last $c \log N$ digits is asymptotically equal to the expected value. Under stronger assumptions we get a similar result for the first $(\log N)^{\frac{3}{2}-\epsilon }$ digits, where $\epsilon $ is a positive constant. In both methods, we use estimations of exponential sums and the concept of discrepancy of real sequences modulo $1$ plays an important role.
LA - eng
KW - digital expansion; exponential sequence; subblock occurrence; sum-of-digits function
UR - http://eudml.org/doc/248923
ER -

References

top
  1. [1] A. Baker, Transcendental number theory. Cambridge University Press, Cambridge - New York - Port Chester - Melbourne - Sydney, 1990. Zbl0715.11032MR1074572
  2. [2] A. Baker, G. Wüstholz, Logarithmic forms and group varieties. J. Reine Angew. Math.442 (1993), 19-62. Zbl0788.11026MR1234835
  3. [3] G. Barat, R.F. Tichy, R. Tijdeman, Digital blocks in linear numeration systems. In Number Theory in Progress (Proceedings of the Number Theory Conference Zakopane 1997, K. Gyôry, H. Iwaniec, and J. Urbanowicz edt.), de Gruyter, Berlin, New York, 1999, 607-633. Zbl1126.11327MR1689534
  4. [4] N.L. Bassily, I. Kàtai, Distribution of the values of q-additive functions on polynomial sequences. Acta Math. Hung.68 (1995), 353-361. Zbl0832.11035MR1333478
  5. [5] R. Blecksmith, M. Filaseta, C. Nicol, A result on the digits of an. Acta Arith.64 (1993), 331-339. Zbl0787.11001MR1234965
  6. [6] M. Drmota, R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes Math. 1651, Springer, 1997. Zbl0877.11043MR1470456
  7. [7] P. Erdös, P. Turán, On a problem in the theory of uniform distributions I, II. Indagationes Math.10 (1948), 370-378, 406-413. MR27895
  8. [8] P. Kiss, R.F. Tichy, A discrepancy problem with applications to linear recurrences I,II. Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 5, 135-138; no. 6, 191-194. Zbl0692.10041MR1011853
  9. [9] N.M. Korobov, Trigonometric sums with exponential functions and the distribution of signs in repeating decimals. Mat. Zametki8 (1970), 641-652 = Math. Notes8 (1970), 831-837. Zbl0223.10026MR280445
  10. [10] N.M. Korobov, On the distribution of digits in periodic fractions. Matem. Sbornik89 (1972), 654-670. Zbl0248.10007MR424660
  11. [11] N.M. Korobov, Exponential sums and their applications. Kluwer Acad. Publ., North-Holland, 1992. Zbl0754.11022MR1162539
  12. [12] H. Niederreiter, On the Distribution of Pseudo-Random Numbers Generated by the LinearCongruential Method II. Math. Comp.28 (1974), 1117-1132. Zbl0303.65003MR457391
  13. [13] H. Niederreiter, On the Distribution of Pseudo-Random Numbers Generated by the Linear CongruentialMethod III. Math. Comp.30 (1976), 571-597. Zbl0342.65002MR457392

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.