# An existence theorem for a class of nonlinear elliptic optimal control problems

Commentationes Mathematicae Universitatis Carolinae (1991)

- Volume: 32, Issue: 2, page 273-279
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topPapageorgiou, Nikolaos S.. "An existence theorem for a class of nonlinear elliptic optimal control problems." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 273-279. <http://eudml.org/doc/247263>.

@article{Papageorgiou1991,

abstract = {We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.},

author = {Papageorgiou, Nikolaos S.},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {Sobolev embedding theorem; Novikov’s theorem; Aumann’s theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation; Novikov's theorem; Aumann's theorem; pseudomonotone operator; optimal control problems of Lagrange type; higher order nonlinear elliptic equations of divergence form; optimal ``state-control'' pairs},

language = {eng},

number = {2},

pages = {273-279},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {An existence theorem for a class of nonlinear elliptic optimal control problems},

url = {http://eudml.org/doc/247263},

volume = {32},

year = {1991},

}

TY - JOUR

AU - Papageorgiou, Nikolaos S.

TI - An existence theorem for a class of nonlinear elliptic optimal control problems

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1991

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 32

IS - 2

SP - 273

EP - 279

AB - We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.

LA - eng

KW - Sobolev embedding theorem; Novikov’s theorem; Aumann’s theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation; Novikov's theorem; Aumann's theorem; pseudomonotone operator; optimal control problems of Lagrange type; higher order nonlinear elliptic equations of divergence form; optimal ``state-control'' pairs

UR - http://eudml.org/doc/247263

ER -

## References

top- Barbu V., Optimal Control of Variational Inequalities, Research Notes in Math., vol. 100, Pitman, Boston, 1984. Zbl0696.49021MR0742624
- Browder F., Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 2659-2661. (1977) MR0445124
- Cesari L., Optimization-Theory and Applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR0688142
- Delahaye J.-P., Denel J., The continuities of the point to set maps: Definitions and equivalences, Math. Programming Study 10 (1979), 8-12. (1979)
- Levin V., Borel sections of many-valued maps, Siberian Math. Journal 19 (1978), 434-438. (1978) MR0501769
- Lions J.-L., Optimal Control of Systems Governed by Partial Differential Equations, SpringerVerlag, New York, 1971. Zbl0203.09001MR0271512
- Raitum U.E., On optimal control problems for linear elliptic equations, Soviet. Math. Doklady 20 (1979), 129-132. (1979) MR0520593
- Saint-Beuve M.-F., On the extension of von Neumann-Aumann's theorem, Journ. Funct. Analysis 17 (1974), 112-129. (1974) MR0374364
- Zeidler E., Nonlinear Functional Analysis and Applications II, Springer-Verlag, Berlin, 1990.
- Zolezzi T., Teoremi di esistenza per problemi di controllo ottimo retti da equazioni ellitiche o paraboliche, Rend. Sem. Mat. Univ. Padova 44 (1970), 155-173. (1970) MR0308891

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.