Bifurcation points of variational inequalities

Milan Kučera

Czechoslovak Mathematical Journal (1982)

  • Volume: 32, Issue: 2, page 208-226
  • ISSN: 0011-4642

How to cite

top

Kučera, Milan. "Bifurcation points of variational inequalities." Czechoslovak Mathematical Journal 32.2 (1982): 208-226. <http://eudml.org/doc/13307>.

@article{Kučera1982,
author = {Kučera, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {bifurcation point; variational inequality},
language = {eng},
number = {2},
pages = {208-226},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcation points of variational inequalities},
url = {http://eudml.org/doc/13307},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Kučera, Milan
TI - Bifurcation points of variational inequalities
JO - Czechoslovak Mathematical Journal
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 2
SP - 208
EP - 226
LA - eng
KW - bifurcation point; variational inequality
UR - http://eudml.org/doc/13307
ER -

References

top
  1. E. N. Dancer, 10.1512/iumj.1974.23.23087, Indiana Univ. Math. Journ., 23, (1974), 1069-1076. (1974) Zbl0276.47051MR0348567DOI10.1512/iumj.1974.23.23087
  2. M. Kučera, A new method for obtaining eigenvalues of variational inequalities of the special type. Preliminary communication, Comment. Math. Univ. Carol. 18 (1977), 205 to 210. (1977) MR0435909
  3. M. Kučera, A new method for obtaining eigenvalues of variational inequalities. Branches of eigenvalues of the equation with the penalty in a special case, Časopis pro pěstování matematiky, 104 (1979), 295-310. (1979) MR0543230
  4. M. Kučera, A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory, Časopis pro pěstování matematiky, 104 (1979), 389-411. (1979) MR0553173
  5. M. Kučera, A new method for obtaining eigenvalues of variational inequalities: Operators with multiple eigenvalues, Czechoslovak Math. Journ. 32 (107), (1982), 197-207. (1982) MR0654056
  6. M. Kučera J. Nečas J. Souček, The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelmann theory, In "Nonlinear Analysis", Academic Press, New York-San Francisco-London 1978. (1978) MR0513782
  7. E. Miersemann, 10.1002/mana.19780850116, Math. Nachr. 85 (1978), 195-213. (1978) Zbl0324.49036MR0517651DOI10.1002/mana.19780850116
  8. E. Miersemann, Höhere Eigenwerte von Variationsungleichungen, Beiträge zur Analysis, 17(1981), 65-68. (1981) Zbl0475.49016MR0663272
  9. E. Miersemann, 10.1002/mana.19750650118, Math. Nachr. 65 (1975), 187-209. (1975) MR0387843DOI10.1002/mana.19750650118
  10. P. H. Rabinowitz, 10.1016/0022-1236(71)90030-9, Journ. Funct. Anal. 7(1971), 487-513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9
  11. E. Zeidler, Vorlesungen über nichtlineare Functionalanalysis I - Fixpunktsätze, Teubner Verlagsgesellschaft, Leipzig 1976. (1976) MR0473927

Citations in EuDML Documents

top
  1. Miroslav Bosák, Milan Kučera, Bifurcation of periodic solutions to differential inequalities in 3
  2. Jan Eisner, Milan Kučera, Hopf bifurcation and ordinary differential inequalities
  3. Milan Kučera, A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues
  4. Erich Miersemann, On higher eigenvalues of variational inequalities
  5. Milan Kučera, Bifurcation of periodic solutions to variational inequalities in κ based on Alexander-Yorke theorem
  6. Pavel Drábek, Milan Kučera, Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions
  7. Jan Eisner, Milan Kučera, Spatial patterns for reaction-diffusion systems with conditions described by inclusions
  8. Milan Kučera, A global continuation theorem for obtaining eigenvalues and bifurcation points
  9. Jaroslav Resler, Stability of eigenvalues and eigenvectors of variational inequalities
  10. Pavol Quittner, Spectral analysis of variational inequalities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.