Bifurcation points of variational inequalities
Czechoslovak Mathematical Journal (1982)
- Volume: 32, Issue: 2, page 208-226
- ISSN: 0011-4642
Access Full Article
topHow to cite
topKučera, Milan. "Bifurcation points of variational inequalities." Czechoslovak Mathematical Journal 32.2 (1982): 208-226. <http://eudml.org/doc/13307>.
@article{Kučera1982,
author = {Kučera, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {bifurcation point; variational inequality},
language = {eng},
number = {2},
pages = {208-226},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcation points of variational inequalities},
url = {http://eudml.org/doc/13307},
volume = {32},
year = {1982},
}
TY - JOUR
AU - Kučera, Milan
TI - Bifurcation points of variational inequalities
JO - Czechoslovak Mathematical Journal
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 2
SP - 208
EP - 226
LA - eng
KW - bifurcation point; variational inequality
UR - http://eudml.org/doc/13307
ER -
References
top- E. N. Dancer, 10.1512/iumj.1974.23.23087, Indiana Univ. Math. Journ., 23, (1974), 1069-1076. (1974) Zbl0276.47051MR0348567DOI10.1512/iumj.1974.23.23087
- M. Kučera, A new method for obtaining eigenvalues of variational inequalities of the special type. Preliminary communication, Comment. Math. Univ. Carol. 18 (1977), 205 to 210. (1977) MR0435909
- M. Kučera, A new method for obtaining eigenvalues of variational inequalities. Branches of eigenvalues of the equation with the penalty in a special case, Časopis pro pěstování matematiky, 104 (1979), 295-310. (1979) MR0543230
- M. Kučera, A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory, Časopis pro pěstování matematiky, 104 (1979), 389-411. (1979) MR0553173
- M. Kučera, A new method for obtaining eigenvalues of variational inequalities: Operators with multiple eigenvalues, Czechoslovak Math. Journ. 32 (107), (1982), 197-207. (1982) MR0654056
- M. Kučera J. Nečas J. Souček, The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelmann theory, In "Nonlinear Analysis", Academic Press, New York-San Francisco-London 1978. (1978) MR0513782
- E. Miersemann, 10.1002/mana.19780850116, Math. Nachr. 85 (1978), 195-213. (1978) Zbl0324.49036MR0517651DOI10.1002/mana.19780850116
- E. Miersemann, Höhere Eigenwerte von Variationsungleichungen, Beiträge zur Analysis, 17(1981), 65-68. (1981) Zbl0475.49016MR0663272
- E. Miersemann, 10.1002/mana.19750650118, Math. Nachr. 65 (1975), 187-209. (1975) MR0387843DOI10.1002/mana.19750650118
- P. H. Rabinowitz, 10.1016/0022-1236(71)90030-9, Journ. Funct. Anal. 7(1971), 487-513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9
- E. Zeidler, Vorlesungen über nichtlineare Functionalanalysis I - Fixpunktsätze, Teubner Verlagsgesellschaft, Leipzig 1976. (1976) MR0473927
Citations in EuDML Documents
top- Miroslav Bosák, Milan Kučera, Bifurcation of periodic solutions to differential inequalities in
- Jan Eisner, Milan Kučera, Hopf bifurcation and ordinary differential inequalities
- Milan Kučera, A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues
- Erich Miersemann, On higher eigenvalues of variational inequalities
- Milan Kučera, Bifurcation of periodic solutions to variational inequalities in based on Alexander-Yorke theorem
- Pavel Drábek, Milan Kučera, Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions
- Pavol Quittner, Spectral analysis of variational inequalities
- Jaroslav Resler, Stability of eigenvalues and eigenvectors of variational inequalities
- Milan Kučera, A global continuation theorem for obtaining eigenvalues and bifurcation points
- Pavel Drábek, Milan Kučera, Marta Míková, Bifurcation points of reaction-diffusion systems with unilateral conditions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.