On octahedral extensions of and quadratic -curves

Julio Fernández

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 125-131
  • ISSN: 1246-7405

Abstract

top
We give a necessary condition for a surjective representation Gal ( ¯ / ) PGL 2 ( 𝔽 3 ) to arise from the 3 -torsion of a -curve. We pay a special attention to the case of quadratic -curves.

How to cite

top

Fernández, Julio. "On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves." Journal de théorie des nombres de Bordeaux 15.1 (2003): 125-131. <http://eudml.org/doc/249076>.

@article{Fernández2003,
abstract = {We give a necessary condition for a surjective representation Gal$(\overline\{\mathbb \{Q\}\} /\mathbb \{Q\}) \rightarrow \mathrm \{PGL\}_2(\mathbb \{F\}_3)$ to arise from the $3$-torsion of a $\mathbb \{Q\}$-curve. We pay a special attention to the case of quadratic $\mathbb \{Q\}$-curves.},
author = {Fernández, Julio},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {elliptic curve; trace form; discriminant; Witt invariant},
language = {eng},
number = {1},
pages = {125-131},
publisher = {Université Bordeaux I},
title = {On octahedral extensions of $\mathbb \{Q\}$ and quadratic $\mathbb \{Q\}$-curves},
url = {http://eudml.org/doc/249076},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Fernández, Julio
TI - On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 125
EP - 131
AB - We give a necessary condition for a surjective representation Gal$(\overline{\mathbb {Q}} /\mathbb {Q}) \rightarrow \mathrm {PGL}_2(\mathbb {F}_3)$ to arise from the $3$-torsion of a $\mathbb {Q}$-curve. We pay a special attention to the case of quadratic $\mathbb {Q}$-curves.
LA - eng
KW - elliptic curve; trace form; discriminant; Witt invariant
UR - http://eudml.org/doc/249076
ER -

References

top
  1. [1] J.S. Ellenberg, C. Skinner, On the modularity of Q-curves. Duke Math. J.109 (2001), no. 1, 97-122. Zbl1009.11038MR1844206
  2. [2] J. Fernández, J.C. Lario, A. Rio, Octahedral Galois representations arising from Q-curves of degree 2. Canad. J. Math.54 (2002), 1202-1228. Zbl1044.11042MR1940236
  3. [3] J.C. Lario, A. Rio, An octahedral-elliptic type equality in Br2(k). C. R. Acad. Sci. Paris Sér. I Math.321 (1995), no. 1, 39-44. Zbl0837.11061MR1340079
  4. [4] J. Quer, Liftings of projective 2-dimensional Galois representations and embedding problems. J. Algebra171 (1995), no. 2, 541-566. Zbl0845.12003MR1315912
  5. [5] J. Quer, Q-curves and abelian varieties of GL2 -type. Proc. London Math. Soc. (3) 81 (2000), no. 2, 285-317. Zbl1035.11026MR1770611
  6. [6] J. Quer, Fields of definition of Q-curves. J. Théor Nombres Bordeaux13 (2001), no. 1, 275-285. Zbl1046.11044MR1838087
  7. [7] K.A. Ribet, Abelian varieties over Q and modular forms. Algebra and topology 1992 (Taejön), Korea Adv. Inst. Sci. Tech., Taejón, 1992, pp. 53-79. MR1212980
  8. [8] J.-P. Serre, Modular forms of weight one and Galois representations. Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 193-268. Zbl0366.10022MR450201
  9. [9] J.-P. Serre, L'invariant de Witt de la forme Tr(x2). Comment. Math. Helv.59 (1984), no. 4, 651-676. Zbl0565.12014MR780081
  10. [10] N. Vila, On stem extensions of Sn as Galois group over number fields. J. Algebra116 (1988), 251-260. Zbl0662.12011MR944159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.