Computing modular degrees using -functions
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 3, page 673-682
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDelaunay, Christophe. "Computing modular degrees using $L$-functions." Journal de théorie des nombres de Bordeaux 15.3 (2003): 673-682. <http://eudml.org/doc/249080>.
@article{Delaunay2003,
abstract = {We give an algorithm to compute the modular degree of an elliptic curve defined over $\mathbb \{Q\}$. Our method is based on the computation of the special value at $s = 2$ of the symmetric square of the $L$-function attached to the elliptic curve. This method is quite efficient and easy to implement.},
author = {Delaunay, Christophe},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {modular parametrization; elliptic curve; symmetric square},
language = {eng},
number = {3},
pages = {673-682},
publisher = {Université Bordeaux I},
title = {Computing modular degrees using $L$-functions},
url = {http://eudml.org/doc/249080},
volume = {15},
year = {2003},
}
TY - JOUR
AU - Delaunay, Christophe
TI - Computing modular degrees using $L$-functions
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 3
SP - 673
EP - 682
AB - We give an algorithm to compute the modular degree of an elliptic curve defined over $\mathbb {Q}$. Our method is based on the computation of the special value at $s = 2$ of the symmetric square of the $L$-function attached to the elliptic curve. This method is quite efficient and easy to implement.
LA - eng
KW - modular parametrization; elliptic curve; symmetric square
UR - http://eudml.org/doc/249080
ER -
References
top- [1] A. Atkin, J. Lehner, Hecke operators on Γ0(m). Math. Ann.185 (1970), 134-160. Zbl0177.34901
- [2] A. Atkin, W. Li, Twists of newforms and pseudo-eigenvalues of W-operators. Invent. Math.48 (1978), 221-243. Zbl0369.10016MR508986
- [3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc.14 no. 4 (2001), 843-939. (electronic). Zbl0982.11033MR1839918
- [4] J. Coates, C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic curve. J. reine angew. Math.375 (1987), 104-156. Zbl0609.14013MR882294
- [5] H. Cohen, Advanced topics in computational algebraic number theory. Graduate Texts in Mathematics, 193, Springer-Verlag, New-York, 2000. Zbl0977.11056MR1728313
- [6] J. Cremona, Algorithms for modular elliptic curves. Second edition, Cambridge University Press, 1997. Zbl0872.14041MR1628193
- [7] J. Cremona, Computing the degree of the modular parametrization of a modular elliptic curve. Math. Comp.64 (1995), 1235-1250. Zbl0835.11022MR1297466
- [8] D. Goldfeld, J. Hoffstein, D. Lieman, An effective zero-free region. Ann. of Math. (2) 140 no. 1 (1994), 177-181. Zbl0814.11032MR1289494
- [9] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, pari-gp, available by anonymous ftp.
- [10] G. Shimura, The special values of the zeta functions associated with cusp forms. Com. Pure Appl. Math.29 (1976), 783-804. Zbl0348.10015MR434962
- [11] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 no. 3 (1995), 553-572. Zbl0823.11030MR1333036
- [12] E. Tollis, Zeros of Dedekind zeta functions in the critical strip. Math. Comp.66 (1997), 1295-1321. Zbl0877.11061MR1423079
- [13] M. Watkins, Computing the modular degree of an elliptic curve. Experimental Maths11 no. 4 (2003), 487-502. Zbl1162.11349MR1969641
- [14] A. Wiles, Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 no. 3 (1995), 443-551. Zbl0823.11029MR1333035
- [15] D. Zagier, Modular parametrizations of elliptic curves. Canad. Math. Bull.28 no. 3 (1985), 372-384. Zbl0579.14027MR790959
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.