Computing modular degrees using L -functions

Christophe Delaunay

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 3, page 673-682
  • ISSN: 1246-7405

Abstract

top
We give an algorithm to compute the modular degree of an elliptic curve defined over . Our method is based on the computation of the special value at s = 2 of the symmetric square of the L -function attached to the elliptic curve. This method is quite efficient and easy to implement.

How to cite

top

Delaunay, Christophe. "Computing modular degrees using $L$-functions." Journal de théorie des nombres de Bordeaux 15.3 (2003): 673-682. <http://eudml.org/doc/249080>.

@article{Delaunay2003,
abstract = {We give an algorithm to compute the modular degree of an elliptic curve defined over $\mathbb \{Q\}$. Our method is based on the computation of the special value at $s = 2$ of the symmetric square of the $L$-function attached to the elliptic curve. This method is quite efficient and easy to implement.},
author = {Delaunay, Christophe},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {modular parametrization; elliptic curve; symmetric square},
language = {eng},
number = {3},
pages = {673-682},
publisher = {Université Bordeaux I},
title = {Computing modular degrees using $L$-functions},
url = {http://eudml.org/doc/249080},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Delaunay, Christophe
TI - Computing modular degrees using $L$-functions
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 3
SP - 673
EP - 682
AB - We give an algorithm to compute the modular degree of an elliptic curve defined over $\mathbb {Q}$. Our method is based on the computation of the special value at $s = 2$ of the symmetric square of the $L$-function attached to the elliptic curve. This method is quite efficient and easy to implement.
LA - eng
KW - modular parametrization; elliptic curve; symmetric square
UR - http://eudml.org/doc/249080
ER -

References

top
  1. [1] A. Atkin, J. Lehner, Hecke operators on Γ0(m). Math. Ann.185 (1970), 134-160. Zbl0177.34901
  2. [2] A. Atkin, W. Li, Twists of newforms and pseudo-eigenvalues of W-operators. Invent. Math.48 (1978), 221-243. Zbl0369.10016MR508986
  3. [3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc.14 no. 4 (2001), 843-939. (electronic). Zbl0982.11033MR1839918
  4. [4] J. Coates, C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic curve. J. reine angew. Math.375 (1987), 104-156. Zbl0609.14013MR882294
  5. [5] H. Cohen, Advanced topics in computational algebraic number theory. Graduate Texts in Mathematics, 193, Springer-Verlag, New-York, 2000. Zbl0977.11056MR1728313
  6. [6] J. Cremona, Algorithms for modular elliptic curves. Second edition, Cambridge University Press, 1997. Zbl0872.14041MR1628193
  7. [7] J. Cremona, Computing the degree of the modular parametrization of a modular elliptic curve. Math. Comp.64 (1995), 1235-1250. Zbl0835.11022MR1297466
  8. [8] D. Goldfeld, J. Hoffstein, D. Lieman, An effective zero-free region. Ann. of Math. (2) 140 no. 1 (1994), 177-181. Zbl0814.11032MR1289494
  9. [9] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, pari-gp, available by anonymous ftp. 
  10. [10] G. Shimura, The special values of the zeta functions associated with cusp forms. Com. Pure Appl. Math.29 (1976), 783-804. Zbl0348.10015MR434962
  11. [11] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 no. 3 (1995), 553-572. Zbl0823.11030MR1333036
  12. [12] E. Tollis, Zeros of Dedekind zeta functions in the critical strip. Math. Comp.66 (1997), 1295-1321. Zbl0877.11061MR1423079
  13. [13] M. Watkins, Computing the modular degree of an elliptic curve. Experimental Maths11 no. 4 (2003), 487-502. Zbl1162.11349MR1969641
  14. [14] A. Wiles, Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 no. 3 (1995), 443-551. Zbl0823.11029MR1333035
  15. [15] D. Zagier, Modular parametrizations of elliptic curves. Canad. Math. Bull.28 no. 3 (1985), 372-384. Zbl0579.14027MR790959

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.