Critical and ramification points of the modular parametrization of an elliptic curve
- [1] Institut Camille Jordan Bâtiment Braconnier Université Claude Bernard Lyon 1 43, avenue du 11 novembre 1918 69622 Villeurbanne cedex, France
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 109-124
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDelaunay, Christophe. "Critical and ramification points of the modular parametrization of an elliptic curve." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 109-124. <http://eudml.org/doc/249431>.
@article{Delaunay2005,
abstract = {Let $E$ be an elliptic curve defined over $\mathbb\{Q\}$ with conductor $N$ and denote by $\varphi $ the modular parametrization:\[\varphi \; : \; X\_0(N) \rightarrow E(\mathbb\{C\}) \; .\]In this paper, we are concerned with the critical and ramification points of $\varphi $. In particular, we explain how we can obtain a more or less experimental study of these points.},
affiliation = {Institut Camille Jordan Bâtiment Braconnier Université Claude Bernard Lyon 1 43, avenue du 11 novembre 1918 69622 Villeurbanne cedex, France},
author = {Delaunay, Christophe},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {modular elliptic curves; critical points; ramification points; analytic rank; Hecke operator; involutory curve},
language = {eng},
number = {1},
pages = {109-124},
publisher = {Université Bordeaux 1},
title = {Critical and ramification points of the modular parametrization of an elliptic curve},
url = {http://eudml.org/doc/249431},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Delaunay, Christophe
TI - Critical and ramification points of the modular parametrization of an elliptic curve
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 109
EP - 124
AB - Let $E$ be an elliptic curve defined over $\mathbb{Q}$ with conductor $N$ and denote by $\varphi $ the modular parametrization:\[\varphi \; : \; X_0(N) \rightarrow E(\mathbb{C}) \; .\]In this paper, we are concerned with the critical and ramification points of $\varphi $. In particular, we explain how we can obtain a more or less experimental study of these points.
LA - eng
KW - modular elliptic curves; critical points; ramification points; analytic rank; Hecke operator; involutory curve
UR - http://eudml.org/doc/249431
ER -
References
top- A.O.L. Atkin, J. Lehner, Hecke operators on . Math. Ann. 185 (1970), 134–160. Zbl0177.34901
- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, pari-gp, available at http://www.math.u-psud.fr/~belabas/pari/
- C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over : wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic). Zbl0982.11033MR1839918
- B. Birch, Heegner points of elliptic curves. Symp. Math. Inst. Alta. Math. 15 (1975), 441–445. Zbl0317.14015MR384805
- H. Cohen, A course in computational algebraic number theory. Graduate Texts in Math. 138, Springer-Verlag, New-York, 4-th corrected printing (2000). Zbl0786.11071MR1228206
- J. Cremona, Algorithms for modular elliptic curves. Cambridge University Press, (1997) second edition. Zbl0758.14042MR1628193
- J. Cremona, Elliptic curve data for conductors up to 25000. Available at http://www.maths.nott.ac.uk/personal/jec/ftp/data/INDEX.html Zbl01.0253.01
- C. Delaunay, Computing modular degrees using -functions. Journ. theo. nomb. Bord. 15 (3) (2003), 673–682. Zbl1070.11021MR2142230
- B. Gross, Heegner points on . Modular Forms, ed. R. A. Ramkin, (1984), 87–105. Zbl0559.14011MR803364
- B. Gross, D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 225–320. Zbl0608.14019MR833192
- B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25 (1974), 1–61. Zbl0281.14016MR354674
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Math. Soc of Japan 11, Princeton university Press (1971). Zbl0221.10029MR1291394
- N. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms. Inv. Math. 98 (1988), 113–146. Zbl0651.10020MR958592
- R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553–572. Zbl0823.11030MR1333036
- M. Watkins, Computing the modular degree. Exp. Math. 11 (4) (2002), 487–502. Zbl1162.11349MR1969641
- A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), no.3, 443–551. Zbl0823.11029MR1333035
- D. Zagier, Modular parametrizations of elliptic curves. Canad. Math. Bull. 28 (3) (1985), 372–384. Zbl0579.14027MR790959
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.