L -functions of automorphic forms and combinatorics: Dyck paths

Laurent Habsieger[1]; Emmanuel Royer

  • [1] Université Claude Bernard Lyon I, Institut Girard Desargues, CNRS UMR 5028, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France), Université Paul Valéry Montpellier III, MIAp, 34199 Montpellier cedex 5 (France)

Annales de l'Institut Fourier (2004)

  • Volume: 54, Issue: 7, page 2105-2141
  • ISSN: 0373-0956

Abstract

top
We give a combinatorial interpretation for the positive moments of the values at the edge of the critical strip of the L -functions of modular forms of G L ( 2 ) and G L ( 3 ) . We deduce some results about the asymptotics of these moments. We extend this interpretation to the moments twisted by the eigenvalues of Hecke operators.

How to cite

top

Habsieger, Laurent, and Royer, Emmanuel. "$L$-functions of automorphic forms and combinatorics: Dyck paths." Annales de l'Institut Fourier 54.7 (2004): 2105-2141. <http://eudml.org/doc/116169>.

@article{Habsieger2004,
abstract = {We give a combinatorial interpretation for the positive moments of the values at the edge of the critical strip of the $L$-functions of modular forms of $GL(2)$ and $GL(3)$. We deduce some results about the asymptotics of these moments. We extend this interpretation to the moments twisted by the eigenvalues of Hecke operators.},
affiliation = {Université Claude Bernard Lyon I, Institut Girard Desargues, CNRS UMR 5028, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France), Université Paul Valéry Montpellier III, MIAp, 34199 Montpellier cedex 5 (France)},
author = {Habsieger, Laurent, Royer, Emmanuel},
journal = {Annales de l'Institut Fourier},
keywords = {Symmetric square; modular form; $L$-function; Dyck path; combinatorics; Narayana number; symmetric square; -function},
language = {eng},
number = {7},
pages = {2105-2141},
publisher = {Association des Annales de l'Institut Fourier},
title = {$L$-functions of automorphic forms and combinatorics: Dyck paths},
url = {http://eudml.org/doc/116169},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Habsieger, Laurent
AU - Royer, Emmanuel
TI - $L$-functions of automorphic forms and combinatorics: Dyck paths
JO - Annales de l'Institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 7
SP - 2105
EP - 2141
AB - We give a combinatorial interpretation for the positive moments of the values at the edge of the critical strip of the $L$-functions of modular forms of $GL(2)$ and $GL(3)$. We deduce some results about the asymptotics of these moments. We extend this interpretation to the moments twisted by the eigenvalues of Hecke operators.
LA - eng
KW - Symmetric square; modular form; $L$-function; Dyck path; combinatorics; Narayana number; symmetric square; -function
UR - http://eudml.org/doc/116169
ER -

References

top
  1. S. Chowla, On the k-analogue of a result in the theory of the Riemann zeta function, Math. Z 38 (1934), 483-487 Zbl0009.00803MR1545462
  2. J. Cogdell, P. Michel, On the Complex Moments of Symmetric power L functions at s = 1 , Int. Math. Res. Not. (2004), 1561-1617 Zbl1093.11032MR2035301
  3. C. Delaunay, Computing the Modular Degree of an Elliptic Curve using L-functions, J. Théor. Nombres Bordeaux 15 (2003) Zbl1070.11021MR2142230
  4. I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger., (2000), Academic Press Inc., San Diego, CA Zbl0981.65001MR1773820
  5. A. Granville, K. Soundararajan, Upper bounds for | L ( 1 , χ ) | , Q. J. Math. 53 (2002), 265-284 Zbl1022.11041MR1930263
  6. H. Iwaniec, W. Luo, P. Sarnak, Low lying zeros of families of L -functions, Inst. Hautes Études Sci. Publ. Math. (2001), 55-131 Zbl1012.11041MR1828743
  7. W. Luo, Values of symmetric square L -functions at 1 , J. Reine Angew. Math (1999), 215-235 Zbl0969.11018MR1665705
  8. H.L. Montgomery, R.C. Vaughan, Extreme values of Dirichlet L -functions at 1 , (Zakopane-Kościelisko, 1997) Vol. 2 (1999), 1039-1052, de Gruyter Zbl0942.11040
  9. E. Royer, Statistique de la variable aléatoire L ( s y m 2 f , 1 ) , Math. Ann. 321 (2001), 667-687 Zbl1006.11023MR1871974
  10. E. Royer, Interprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de la bande critique, Annales scientifiques de l'École Normale Supérieure 36 (2003), 601-620 Zbl1050.11055MR2013928
  11. E. Royer, J. Wu, Taille des valeurs de fonctions L de carrés symétriques au bord de la bande critique, (2004) Zbl1147.11027MR2155022
  12. J.-P. Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p , J. Amer. Math. Soc. 10 (1997), 75-102 Zbl0871.11032MR1396897
  13. R.A. Sulanke, Catalan path statistics having the Narayana distribution, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995) vol. 180 (1998), 369-389 Zbl0896.05002
  14. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, vol. 1 (1995), Société Mathématique de France, Paris Zbl0880.11001MR1366197
  15. M. Watkins, Computing the modular degree of an elliptic curve, Experiment. Math. 11 (2002), 487-502 Zbl1162.11349MR1969641

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.