On sums of three squares

James W. Cogdell

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 33-44
  • ISSN: 1246-7405

Abstract

top
We address the question of when an integer in a totally real number field can be written as the sum of three squared integers from the field and more generally whether it can be represented by a positive definite integral ternary quadratic form over the field. In recent work with Piatetski-Shapiro and Sarnak we have shown that every sufficiently large totally positive square free integer is globally integrally represented if and only if it is so locally at all places, thus essentially resolving the remaining open case of Hilbert's eleventh problem. In this paper we give an exposition of the ideas in the proof of this result.

How to cite

top

Cogdell, James W.. "On sums of three squares." Journal de théorie des nombres de Bordeaux 15.1 (2003): 33-44. <http://eudml.org/doc/249109>.

@article{Cogdell2003,
abstract = {We address the question of when an integer in a totally real number field can be written as the sum of three squared integers from the field and more generally whether it can be represented by a positive definite integral ternary quadratic form over the field. In recent work with Piatetski-Shapiro and Sarnak we have shown that every sufficiently large totally positive square free integer is globally integrally represented if and only if it is so locally at all places, thus essentially resolving the remaining open case of Hilbert's eleventh problem. In this paper we give an exposition of the ideas in the proof of this result.},
author = {Cogdell, James W.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {sums of squares; integral quadratic forms; theta series; Waldspurger's theorem; subconvexity estimates},
language = {eng},
number = {1},
pages = {33-44},
publisher = {Université Bordeaux I},
title = {On sums of three squares},
url = {http://eudml.org/doc/249109},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Cogdell, James W.
TI - On sums of three squares
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 33
EP - 44
AB - We address the question of when an integer in a totally real number field can be written as the sum of three squared integers from the field and more generally whether it can be represented by a positive definite integral ternary quadratic form over the field. In recent work with Piatetski-Shapiro and Sarnak we have shown that every sufficiently large totally positive square free integer is globally integrally represented if and only if it is so locally at all places, thus essentially resolving the remaining open case of Hilbert's eleventh problem. In this paper we give an exposition of the ideas in the proof of this result.
LA - eng
KW - sums of squares; integral quadratic forms; theta series; Waldspurger's theorem; subconvexity estimates
UR - http://eudml.org/doc/249109
ER -

References

top
  1. [1] M. Baruch, Z. Mao, Central value of automorphic L-functions, preprint, 2000. 
  2. [2] J.-L. Brylinkski, J.-P. Labesse, Cohomologie d'intersection et fonctions L de certaines variétés de Shimura. Ann. Sci. École Norm. Sup.(4) 17 (1984), 361-412. Zbl0553.12005MR777375
  3. [3] J.W. Cogdell, I.I. Piatetski-Shapiro, P. Sarnak, Estimates on the critical line for Hilbert modular L-functions and applications, in preparation. 
  4. [4] E.N. Donkar, On sums of three integral squares in algebraic number fields. Amer. J. Math., 99 (1977), 1297-1328. Zbl0369.10030MR460286
  5. [5] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math., 92 (1988), 73-90. Zbl0628.10029MR931205
  6. [6] W. Duke, R. Schulze-Pillot, Representations of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math.89 (1990), 49-57. Zbl0692.10020MR1029390
  7. [7] J.S. Hsia, Representations by spinor genera. Pacific J. Math.63 (1976), 147-152. Zbl0328.10018MR424685
  8. [8] J.S. Hsia, Y. Kitaoka, M. Kneser, Representations of positive definite quadratic forms. J. Reine Angew. Math.301 (1978), 132-141. Zbl0374.10013MR560499
  9. [9] H. Iwaniec, Fourier coefficients of modular forms of half integral weight. Invent. Math.87 (1987), 385-401. Zbl0606.10017MR870736
  10. [10] H. Iwaniec, P. Sarnak, Perspectives on the analytic theory of L-functions. Geom. Funct. Anal. (GAFA), Special Volume, Part II (2000), 705-741. Zbl0996.11036MR1826269
  11. [11] H. Kim, F. Shahidi, Cuspidality of symmetric powers of GL(2) with applications. Duke Math. J.112 (2002), 177-197. Zbl1074.11027MR1890650
  12. [12] M. Kneser, Darstellungsmasse indefiniter quadratischer Formen. Math. Zeit.77 (1961), 188-194. Zbl0100.03601MR140487
  13. [13] P. Michel, Familles de fonctions L de formes automorphes et applications. J. Théor. Nombres Bordeaux15 (2003), 275-307. Zbl1056.11027MR2019017
  14. [14] Y. Petridis, P. Sarnak, Quantum unique ergodicity for SL2(O) and estimates for L-functions. J. Evol. Equ.1 (2001), 277-290. Zbl0995.11036MR1861223
  15. [15] D. Rohrlich, Non-vanishing of L-functions for GL(2). Invent. Math.97 (1989), 381-403. Zbl0677.10020
  16. [16] P. Sarnak, Integrals of products of eigenfunctions. Internat. Math. Res. Notices (1994) 251-260. Zbl0833.11020MR1277052
  17. [17] P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J. Funct. Anal184 (2001), 419-453. Zbl1006.11022MR1851004
  18. [18] R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen. Invent. Math.75 (1984), 283-299. Zbl0533.10021MR732548
  19. [19] R. Schulze-Pillot, Darstellungsmasse von Spinorgeschlechtern ternärer quadratischer Formen. J. Reine Angew. Math.352 (1984), 114-132. Zbl0533.10016MR758697
  20. [20] R. Schulze-Pillot, Ternary quadratic forms and Brandt matrices. Nagoya Math. J.102 (1986), 117-126. Zbl0566.10015MR846133
  21. [21] A. Selberg, On the estimation of Fourier coefficients of modular forms. Proc. Sympos. Pure Math., Vol. VIII, pp. 1-15Amer. Math. Soc., Providence, R.I., 1965. Zbl0142.33903MR182610
  22. [22] G. Shimura, On the Fourier coefficients of Hilbert modular forms of half-integral weight. Duke Math. J.72 (1993), 501-557. Zbl0802.11017MR1233447
  23. [23] C.L. Siegel, Über die analytische Theorie der quadratischer Formen I. Ann. of Math.36 (1935), 527-606; II, 37 (1936), 230-263; III, 38 (1937) 212-291. Zbl61.0140.01MR1503238
  24. [24] C.L. Siegel, Indefinite quadratische Formen und Funktionentheorie I. Math. Ann.124 (1951) 17-54; II, 366-387. Zbl0043.27402MR67930
  25. [25] J.-L. Waldspurger, Correspondance de Shimura. J. Math. Pures Appl.59 (1980), 1-113. Zbl0412.10019MR577010
  26. [26] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl.60 (1981), 375-484. Zbl0431.10015MR646366
  27. [27] L. Walling, A remark on differences of theta series. J. Number Theory48 (1994), 243-251. Zbl0810.11026MR1285542

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.