Arithmetic of linear forms involving odd zeta values
- [1] Department of Mechanics and Mathematics Moscow Lomonosov State University Vorobiovy Gory, GSP-2 119992 Moscow, Russia
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 251-291
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topZudilin, Wadim. "Arithmetic of linear forms involving odd zeta values." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 251-291. <http://eudml.org/doc/249254>.
@article{Zudilin2004,
abstract = {A general hypergeometric construction of linear forms in (odd) zeta values is presented. The construction allows to recover the records of Rhin and Viola for the irrationality measures of $\zeta (2)$ and $\zeta (3)$, as well as to explain Rivoal’s recent result on infiniteness of irrational numbers in the set of odd zeta values, and to prove that at least one of the four numbers $\zeta (5)$, $\zeta (7)$, $\zeta (9)$, and $\zeta (11)$ is irrational.},
affiliation = {Department of Mechanics and Mathematics Moscow Lomonosov State University Vorobiovy Gory, GSP-2 119992 Moscow, Russia},
author = {Zudilin, Wadim},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {irrationality; zeta values; group structure},
language = {eng},
number = {1},
pages = {251-291},
publisher = {Université Bordeaux 1},
title = {Arithmetic of linear forms involving odd zeta values},
url = {http://eudml.org/doc/249254},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Zudilin, Wadim
TI - Arithmetic of linear forms involving odd zeta values
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 251
EP - 291
AB - A general hypergeometric construction of linear forms in (odd) zeta values is presented. The construction allows to recover the records of Rhin and Viola for the irrationality measures of $\zeta (2)$ and $\zeta (3)$, as well as to explain Rivoal’s recent result on infiniteness of irrational numbers in the set of odd zeta values, and to prove that at least one of the four numbers $\zeta (5)$, $\zeta (7)$, $\zeta (9)$, and $\zeta (11)$ is irrational.
LA - eng
KW - irrationality; zeta values; group structure
UR - http://eudml.org/doc/249254
ER -
References
top- R. Apéry, Irrationalité de et . Astérisque 61 (1979), 11–13. Zbl0401.10049
- W. N. Bailey, Some transformations of generalized hypergeometric series, and contour integrals of Barnes’s type. Quart. J. Math. Oxford 3:11 (1932), 168–182. Zbl0005.40001
- W. N. Bailey, Transformations of well-poised hypergeometric series. Proc. London Math. Soc. II Ser. 36:4 (1934), 235–240. Zbl0008.07101
- W. N. Bailey, Generalized hypergeometric series. Cambridge Math. Tracts 32 (Cambridge University Press, Cambridge, 1935); 2nd reprinted edition (Stechert-Hafner, New York, NY, 1964). Zbl0011.02303MR185155
- K. Ball, T. Rivoal, Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs. Invent. Math. 146:1 (2001), 193–207. Zbl1058.11051MR1859021
- F. Beukers, A note on the irrationality of and . Bull. London Math. Soc. 11:3 (1979), 268–272. Zbl0421.10023MR554391
- G. V. Chudnovsky, On the method of Thue–Siegel. Ann. of Math. II Ser. 117:2 (1983), 325–382. Zbl0518.10038MR690849
- R. Dvornicich, C. Viola, Some remarks on Beukers’ integrals. Colloq. Math. Soc. János Bolyai 51 (North-Holland, Amsterdam, 1987), 637–657. Zbl0755.11019MR1058238
- N. I. Fel’dman, Yu. V. Nesterenko, Transcendental numbers. (Number theory IV), Encyclopaedia Math. Sci. 44 (Springer-Verlag, Berlin, 1998). Zbl0885.11004MR1603608
- L. A. Gutnik, On the irrationality of certain quantities involving . Uspekhi Mat. Nauk [Russian Math. Surveys] 34:3 (1979), 190; Acta Arith. 42:3 (1983), 255–264. Zbl0437.10015MR729735
- M. Hata, Legendre type polynomials and irrationality measures. J. Reine Angew. Math. 407:1 (1990), 99–125. Zbl0692.10034MR1048530
- M. Hata, Irrationality measures of the values of hypergeometric functions. Acta Arith. 60:4 (1992), 335–347. Zbl0760.11020MR1159350
- M. Hata, Rational approximations to the dilogarithm. Trans. Amer. Math. Soc. 336:1 (1993), 363–387. Zbl0768.11022MR1147401
- M. Hata, A note on Beukers’ integral. J. Austral. Math. Soc. Ser. A 58:2 (1995), 143–153. Zbl0830.11026MR1323987
- M. Hata, A new irrationality measure for . Acta Arith. 92:1 (2000), 47–57. Zbl0955.11023MR1739738
- A. Heimonen, T. Matala-Aho, K. Väänänen, On irrationality measures of the values of Gauss hypergeometric function. Manuscripta Math. 81:1/2 (1993), 183–202. Zbl0801.11032MR1247597
- T. G. Hessami Pilerhood, Arithmetic properties of values of hypergeometric functions. Ph. D. thesis (Moscow University, Moscow, 1999); Linear independence of vectors with polylogarithmic coordinates. Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] 6 (1999), 54–56. Zbl0983.11044
- Yu. L. Luke, Mathematical functions and their approximations. (Academic Press, New York, NY, 1975). Zbl0318.33001MR501762
- Yu. V. Nesterenko, A few remarks on . Mat. Zametki [Math. Notes] 59:6 (1996), 865–880. Zbl0888.11028MR1445472
- Yu. V. Nesterenko, Integral identities and constructions of approximations to zeta values. Actes des 12èmes rencontres arithmétiques de Caen (June 29–30, 2001), J. Théorie Nombres Bordeaux 15:2 (2003), 535–550. Zbl1090.11047MR2140866
- Yu. V. Nesterenko, Arithmetic properties of values of the Riemann zeta function and generalized hypergeometric functions. Manuscript (2001).
- E. M. Nikishin, On irrationality of values of functions . Mat. Sb. [Russian Acad. Sci. Sb. Math.] 109:3 (1979), 410–417. Zbl0414.10032MR542809
- A. van der Poorten, A proof that Euler missed... Apéry’s proof of the irrationality of . An informal report, Math. Intelligencer 1:4 (1978/79), 195–203. Zbl0409.10028MR547748
- G. Rhin, C. Viola, On the irrationality measure of . Ann. Inst. Fourier (Grenoble) 43:1 (1993), 85–109. Zbl0776.11036MR1209696
- G. Rhin, C. Viola, On a permutation group related to . Acta Arith. 77:1 (1996), 23–56. Zbl0864.11037MR1404975
- G. Rhin, C. Viola, The group structure for . Acta Arith. 97:3 (2001), 269–293. Zbl1004.11042MR1826005
- T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. C. R. Acad. Sci. Paris Sér. I Math. 331:4 (2000), 267–270. Zbl0973.11072MR1787183
- T. Rivoal, Irrationnalité d’une infinité de valeurs de la fonction zêta aux entiers impairs. Rapport de recherche SDAD no. 2000-9 (Université de Caen, Caen, 2000).
- T. Rivoal, Propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers impairs. Thèse de doctorat (Université de Caen, Caen, 2001).
- T. Rivoal, Irrationalité d’au moins un des neuf nombres . Acta Arith. 103 (2001), 157–167. Zbl1015.11033MR1904870
- E. A. Rukhadze, A lower bound for the approximation of by rational numbers. Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] 6 (1987), 25–29. Zbl0635.10025MR922879
- L. J. Slater, Generalized hypergeometric functions. 2nd edition (Cambridge University Press, Cambridge, 1966). Zbl0135.28101MR201688
- D. V. Vasilyev, On small linear forms for the values of the Riemann zeta-function at odd points. Preprint no. 1 (558) (Nat. Acad. Sci. Belarus, Institute Math., Minsk, 2001).
- C. Viola, Hypergeometric functions and irrationality measures. Analytic Number Theory (ed. Y. Motohashi), London Math. Soc. Lecture Note Ser. 247 (Cambridge University Press, Cambridge, 1997), 353–360. Zbl0904.11020MR1695002
- W. V. Zudilin, Irrationality of values of zeta function at odd integers. Uspekhi Mat. Nauk [Russian Math. Surveys] 56:2 (2001), 215–216. Zbl1037.11048MR1859714
- W. Zudilin, Irrationality of values of zeta-function. Contemporary research in mathematics and mechanics, Proceedings of the 23rd Conference of Young Scientists of the Department of Mechanics and Mathematics (Moscow State University, April 9–14, 2001), part 2 (Publ. Dept. Mech. Math. MSU, Moscow, 2001), 127–135; E-print math.NT/0104249.
- W. Zudilin, Irrationality of values of Riemann’s zeta function. Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.] 66:3 (2002), 49–102. Zbl1114.11305MR1921809
- W. V. Zudilin, One of the eight numbers is irrational. Mat. Zametki [Math. Notes] 70:3 (2001), 472–476. Zbl1022.11035MR1882257
- W. V. Zudilin, Cancellation of factorials. Mat. Sb. [Russian Acad. Sci. Sb. Math.] 192:8 (2001), 95–122. Zbl1030.11032MR1862246
- W. Zudilin, Well-poised hypergeometric service for diophantine problems of zeta values. Actes des 12èmes rencontres arithmétiques de Caen (June 29–30, 2001), J. Théorie Nombres Bordeaux 15:2 (2003), 593–626. Zbl1156.11326MR2140869
Citations in EuDML Documents
top- Stéphane Fischler, Groupes de Rhin-Viola et intégrales multiples
- Wadim Zudilin, Well-poised hypergeometric service for diophantine problems of zeta values
- Carlo Viola, Gruppi di permutazioni e risultati di irrazionalità
- J. Cresson, S. Fischler, T. Rivoal, Séries hypergéométriques multiples et polyzêtas
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.