On the irrationality measure of
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 1, page 85-109
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRhin, Georges, and Viola, Carlo. "On the irrationality measure of $\zeta (2)$." Annales de l'institut Fourier 43.1 (1993): 85-109. <http://eudml.org/doc/74995>.
@article{Rhin1993,
abstract = {We prove that 7. 398 537 is an irrationality measure of $\zeta (2)=\pi ^2/6$. We employ double integrals of suitable rational functions invariant under a group of birational transformations of $\{\Bbb C\}^2$. The numerical results are obtained with the aid of a semi-infinite linear programming method.},
author = {Rhin, Georges, Viola, Carlo},
journal = {Annales de l'institut Fourier},
keywords = {irrationality measure},
language = {eng},
number = {1},
pages = {85-109},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the irrationality measure of $\zeta (2)$},
url = {http://eudml.org/doc/74995},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Rhin, Georges
AU - Viola, Carlo
TI - On the irrationality measure of $\zeta (2)$
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 1
SP - 85
EP - 109
AB - We prove that 7. 398 537 is an irrationality measure of $\zeta (2)=\pi ^2/6$. We employ double integrals of suitable rational functions invariant under a group of birational transformations of ${\Bbb C}^2$. The numerical results are obtained with the aid of a semi-infinite linear programming method.
LA - eng
KW - irrationality measure
UR - http://eudml.org/doc/74995
ER -
References
top- [1] K. ALLADI and M.L. ROBINSON, Legendre polynomials and irrationality, J. reine angew. Math., 318 (1980), 137-155. Zbl0425.10039MR81i:10036
- [2] E.J. ANDERSON and P. NASH, Linear Programming in infinite-dimensional spaces, Wiley-Interscience, 1987. Zbl0632.90038MR88f:90180
- [3] R. APÉRY, Irrationalité de &ζ(2) et &ζ(3), Astérisque, 61 (1979), 11-13. Zbl0401.10049
- [4] F. BEUKERS, A note on the irrationality of &ζ(2) and &ζ(3), Bull. London Math. Soc., 11 (1979), 268-272. Zbl0421.10023MR81j:10045
- [5] D. V. CHUDNOVSKY and G. V. CHUDNOVSKY, Padé and rational approximations to systems of functions and their arithmetic applications, Lect. Notes in Math., 1052 (1984), 37-84. Zbl0536.10028MR86a:11029
- [6] D. V. CHUDNOVSKY and G. V. CHUDNOVSKY, Transcendental methods and Theta-functions, Proc. Symp. Pure Math., 49 (1989), part 2, 167-232. Zbl0679.10026MR91e:11080
- [7] G. V. CHUDNOVSKY, Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π, Lect. Notes in Math., 925 (1982), 299-322. Zbl0518.41014MR83m:10051
- [8] R. DVORNICICH and C. VIOLA, Some remarks on Beukers' integrals, Colloquia Math. Soc. János Bolyai, 51 (1987), 637-657. Zbl0755.11019MR91f:11050
- [9] M. HATA, Legendre type polynomials and irrationality measures, J. reine angew. Math., 407 (1990), 99-125. Zbl0692.10034MR91i:11081
- [10] K. MAHLER, On the approximation of π, Proc. K. Ned. Akad. Wet. Amsterdam, A 56 (1953), 30-42. Zbl0053.36105MR14,957a
- [11] M. MIGNOTTE, Approximations rationnelles de π et quelques autres nombres, Bull. Soc. Math. France, Mémoire 37 (1974), 121-132. Zbl0286.10017MR51 #375
- [12] J.A. NELDER and R. MEAD, A simplex method for function minimization, Computer J., 7 (1965), 308-313. Zbl0229.65053
- [13] W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, W.T. VETTERLING, Numerical Recipes. The art of scientific computing, Cambridge University Press, 1986. Zbl0587.65003
- [14] G. RHIN, Approximants de Padé et mesures effectives d'irrationalité, Progr. in Math., 71 (1987), 155-164. Zbl0632.10034MR90k:11089
- [15] E.A. RUKHADZE, A lower bound for the approximation of ln 2 by rational numbers (Russian), Vestnik Moskov Univ., Ser 1 Math. Mekh., 6 (1987), 25-29. Zbl0635.10025MR89b:11064
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.